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Brief Intro to OnApp
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•Company founded 2010 

•Spun out of a major service provider following 
acquisition by Lloyds Bank 

•180 full time employees, HQ in london 

•Offices on 3 continents 

•OnApp powers 1 in 3 public clouds 

•4000+ DC/cloud operators
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Why is OnApp interested in MicroServers?
• OnApp focus is on next generation scale in public cloud and data centre 

orchestration
• Core density and power efficiency are the top concerns for public cloud 

operators
• Performance and scalability of storage and network services are a requirement
• ARM-based servers are gaining traction in the DC
• Programmable accelerated IO interfaces are becoming mainstream

• Hyper-converged Infrastructure (HCI) with accelerated IO
• Securing tenant workloads in the cloud with hardware assisted encryption of 

storage and network traffic
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Brief explanation of HCI
• Hyper-Converged Infrastructure:

• Software Defined Compute (Hypervisor Virtualisation)
• Software Defined Networking (SDN, Openflow etc..)
• Software Defined Storage (SDS)

• Fastest growing infrastructure orchestration trend in enterprise DC
• SDS - Utilising commodity direct attached storage devices

• Software controlled distributed block storage for Virtual machines
• Software control is extremely advantageous

• fast dynamic reconfiguration
• feature updates
• no hardware appliance dependency

• But performance is significantly impacted
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Web scale computing trends 
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• Greater Power efficiency demand is driving integrated SoC processor adoption

• Intel XeonD family

• Increasing core count, no dependency on NUMA

• ‘Yosemite’-style architecture with centralised IO resources across SoC nodes

• Dark silicon limitation is generating much greater focus on FPGA and CPU co-
processors

• Wide scale adoption of flash storage (up to 16 GBit/s per drive) coupled with high 
performance ethernet (40/50/100 GBit/s) is driving hardware assisted network storage 
access (NVMe over Fabric)



MPSoC, Annecy, July 5th 2017.

ACTICLOUD project - Combatting Resource Under-use in Cloud DCs
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• Resource silo units are constrained by the ‘PC’ architecture
• All cores and memory are coherent
• Server admins must reserve headroom on each unit for bursts
• Servers are mirrored for redundancy so the issue is multiplied

• Resource silo units present challenges in efficiently utilising memory
• Maximum memory for any single VM is constrained by the physical server
• Server admins typically over-equip servers with costly and energy inefficient 

memory as a result
• Bin packing VMs efficiently across the numerous nodes is hard to do efficiently



MPSoC, Annecy, July 5th 2017.

ACTiCLOUD info
EU H2020 project, Grant Agreement No:  732366
Start date: 1 Jan 2017
Duration: 36 months
Partners:

Coordinator: ICCS
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System libraries / Managed runtime systems

Rack-scale Hypervisor

Aggregated Server Resources

Architecture
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NewSQL 
OLTP

Distributed 
(MongoDB, 

HBase)

Cloud Management
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ACTICLOUD Hardware Architectures
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NUMASCALE Architecture Overview
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• Multi-node clustering vs Numachip
• Aggregate resources on the HW level
• Cache-coherent multi-node systems
• Single OS to handle all clustered 

resources
• Share everything
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KALEAO Integrated PCB (Compute Node)
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Deployment 

COMPUTE UNIT 
1 big.LITTLE Server 
8x ARM 64-bit Cores 
128GB NV-CACHE 

4GB DDR4 at 25 GB/s 
20 Gb/s IO Bandwidth 

15W Peak Power 
 
 

NODE 
 

4x Compute Units 
2xZynq FPGA SoCs 
7.68 TB NVMe SSD 

STORAGE AT 1.9GB/s 
(NVMe over Fabric) 

 
2 x 10Gb ETHERNET 

 
 

4x	
4x	

12x	

>	

BLADE 
 

4x Nodes 
 

30.8TB NVMe 
2x 40Gb/s  

 
 

Embedded 10/40Gb 
Ethernet Switch 

PRODUCTION A and B  
 
 
 
 

3U CHASSIS 
 

12 BLADES 
 

192 X SERVERS 
1,532 X CORES 

 
370TB NVMe FLASH 

 
48x 40GbE (960Gb/s) 
Ethernet (stackable) 

 
 3KW Peak Power 

External 48V 
 
 

RACKS 
 

STANDARD  
42U RACKS 

 
21,504 ARM 64b Cores  
10.752 TB LPDDR4  
344 TB NV-Cache 
5.16 PB of NVMe SSD 
13,440 Gb/s Ethernet 

KALEAO	KMAX	

• Hardware accelerated I/O
• Low-power
• Share-nothing
• UNIMEM coherent memory                          

access across compute nodes  
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KALEAO Integrated PCB (Compute Node)

12

Dedicated PCI Lanes

PCI bus

PCI bus

PCI bus

PCI bus

IO Mirroring

FPGA defined Network virtualisation

FPGA defined Storage virtualisation
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KALEAO Integrated PCB (Compute Node)
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Dedicated PCI Lanes

PCI bus

PCI bus

PCI bus

PCI bus

IO Mirroring

FPGA defined Network virtualisation

FPGA defined Storage virtualisation

Software Defined Hardware
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Multi-tenancy in the DC

• Multi-tenant server operation is ubiquitous in the modern DC

• efficient utilisation of hardware resources

• high availability/Disaster Recovery for virtual server workloads requires redundant 
infrastructure and motion of workloads

• Traditional hypervisor architecture is optimised towards large Intel NUMA systems

• large footprint control domain with full TCP/IP stack management interfaces

• all virtual IO queues are multiplexed through the hostOS

• 1-2GB memory footprint + 2 or more physical cores reserved just for management 
domain
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Designing a rackscale low power SoC Hypervisor
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System software architecture

• Clustered Hypervisor technology, centrally managed nodes with no control domain on each

• Scale up to many thousands of managed nodes from a single controller

• Very lightweight raw ethernet-based management interface

• Designed to integrate seamlessly with FPGA co-processor(s) for IO management

• Software Defined hardware acceleration

• Based on Xen, with a complete re-architecture of  VMM IO subsystem and the management/control interface

• Achieves native hardware IO performance for VMs

• Super-fine grained resource management per core/socket/controller/memory address
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Common hypervisor architecture
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MicroVisor integrated architecture
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FPGA Acceleration Integration - Software Defined Hardware
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MicroVisor Management
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Software Defined Hardware - accelerating distributed block storage
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OnApp SDS technology today
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• Hyper-converged storage solution, built for the OnApp cloud platform
• Each Hypervisor advertises and enables remote access to direct attached storage 

drives
• Block path frontend mirrors data across both local and remote paths
• Failures are tolerated at frontend and resynched in the background across 

controllers independently
•  TCP or ATA over Ethernet protocol used for fast bock access between nodes
• Transparent data relocation/content balancing provided whilst VMs stay online
• Scales across 100s of physical nodes (1000s of drives)
• Thin provisioning, fast snapshot and clone, wide area data replication are standard
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Offloading OnApp SDS into an FPGA

23

• Each FPGA unit directly manages physical NVMe storage
• Lightweight linux management host runs on the embedded ARM cores of the Zynq 

FPGA processor
• control stack for the hardware node
• manage the allocation bitmap for virtual LUNs hosted on the local NVMe storage
• signal the virtual to physical block map tables to the FPGA

• the FPGA programmable logic handles ATAoE frames directly and maps to/from the 
NVMe storage

• AoE client signals to the FPGA device extra attributes:
• Data mirror list for IO writes
• Data copy command + destination address for resynch of data 
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Integrated NVMe over Fabric
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Storage FPGA Logical Elements
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Logical Packet Processing Flow
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Hardware/Software Co-design
• Software client is responsible for runtime signalling

• extended packet header provides replication MAC address lists
• packet type indicates READ, WRITE or COPY operation
• path failure detection handled in software on client side

• A9 control system is responsible for data path setup and volume management
• slow path for block requests that are not provisioned
• thin provisioned V2P table updated dynamically
• executes all the SDS content distribution algorithms

• FPGA PL responsible for fast data path handling
• process AoE block requests directly to the NVMe storage
• mirror packets to remote nodes based on packet header lists
• copy data and forward to remote nodes for fast re-synchronisation of data
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Performance Benefits
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MicroVisor guest Boot time (vs Stock Xen)
• spawn guests in 

parallel
• start timer at spawn
• stop timer at first ping 

from the guest 
(triggered from the last 
service in the boot 
chain)
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VM boot time breakdown
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Latency
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• 1-way latency
• No TCP/UDP protocols 

involved — custom raw 
ethernet latency tool

• Off-the-shelf Intel 10GbE
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Conclusions
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• Many core, integrated low power SoC designs are coming to cloud scale DCs

• FPGA acceleration technology features prominently in the roadmap for the DC

• leveraging hardware acceleration is critical in achieving native hardware 
performance in upcoming IO interface advances 

• OnApp has designed and built a clustered Hypervisor that is designed to support thousands of integrated low power 
SoC processing nodes with minimal control and management overhead on each node

• Management system overhead per coherent node is an order of magnitude smaller than a traditional hypervisor 
system

• IO architecture is optimised to move IO much more efficiently to centralised hardware processing units

• OnApp is leveraging FPGA acceleration technology to build a hybrid Software Defined Hardware Accelerated 
Distributed Storage technology
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Thanks!

More info:
julian@onapp.com
https://onapp.com

https://acticloud.eu
@ACTiCLOUD
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http://twitter.com/ACTiCLOUD
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