

Hypervisor support for emerging scale-out / scale-up architectures

Julian Chesterfield Chief Scientific Officer, OnApp Ltd julian@onapp.com

Brief Intro to OnApp

- •Company founded 2010
- •Spun out of a major service provider following acquisition by Lloyds Bank
- •180 full time employees, HQ in london
- •Offices on 3 continents
- •OnApp powers 1 in 3 public clouds
 - •4000+ DC/cloud operators

Why is OnApp interested in MicroServers?

- OnApp focus is on next generation scale in public cloud and data centre orchestration
- Core density and power efficiency are the top concerns for public cloud operators
- Performance and scalability of storage and network services are a requirement
- ARM-based servers are gaining traction in the DC
- Programmable accelerated IO interfaces are becoming mainstream
 - Hyper-converged Infrastructure (HCI) with accelerated IO
 - Securing tenant workloads in the cloud with hardware assisted encryption of storage and network traffic

Brief explanation of HCI

- Hyper-Converged Infrastructure:
 - Software Defined Compute (Hypervisor Virtualisation)
 - Software Defined Networking (SDN, Openflow etc..)
 - Software Defined Storage (SDS)
- Fastest growing infrastructure orchestration trend in enterprise DC
- SDS Utilising commodity direct attached storage devices
 - Software controlled distributed block storage for Virtual machines
- Software control is extremely advantageous
 - fast dynamic reconfiguration
 - feature updates
 - no hardware appliance dependency
- But performance is significantly impacted

Web scale computing trends

- Greater Power efficiency demand is driving integrated SoC processor adoption
 - Intel XeonD family
 - Increasing core count, no dependency on NUMA
 - 'Yosemite'-style architecture with centralised IO resources across SoC nodes
- Dark silicon limitation is generating much greater focus on FPGA and CPU coprocessors
- Wide scale adoption of flash storage (up to 16 GBit/s per drive) coupled with high performance ethernet (40/50/100 GBit/s) is driving hardware assisted network storage access (NVMe over Fabric)

ACTICLOUD project - Combatting Resource Under-use in Cloud DCs

- Resource silo units are constrained by the 'PC' architecture
 - All cores and memory are coherent
 - Server admins must reserve headroom on each unit for bursts
 - Servers are mirrored for redundancy so the issue is multiplied
- Resource silo units present challenges in efficiently utilising memory
 - Maximum memory for any single VM is constrained by the physical server
 - Server admins typically over-equip servers with costly and energy inefficient memory as a result
 - Bin packing VMs efficiently across the numerous nodes is hard to do efficiently

ACTICLOUD info

Start date: 1 Jan 2017

Duration: 36 months

Partners:

Coordinator: ICCS

Architecture

monetdb	NewSQL OLTP	🎨 neo4j	Distributed (MongoDB, HBase)		
System libraries / Managed runtime systems JVM Cloud Management					
Rack-scale Hypervisor					on app ⁱ
NUN	SCALE	Aggreg	Aggregated Server Resources		-KALEAO-

ACTICLOUD Hardware Architectures

MPSoC, Annecy, July 5th 2017.

L ona

NUMASCALE Architecture Overview

- Multi-node clustering vs Numachip
- Aggregate resources on the HW level
- Cache-coherent multi-node systems
- Single OS to handle all clustered resources
- Share everything

MPSoC, Annecy, July 5th 2017.

KALEAO Integrated PCB (Compute Node)

- Hardware accelerated I/O
- Low-power
- Share-nothing
- UNIMEM coherent memory
 access across compute nodes

ACTICLOUD

KALEAO Integrated PCB (Compute Node)

Multi-tenancy in the DC

- Multi-tenant server operation is **ubiquitous** in the modern DC
 - efficient utilisation of hardware resources
 - high availability/Disaster Recovery for virtual server workloads requires redundant infrastructure and motion of workloads
- Traditional hypervisor architecture is optimised towards large Intel NUMA systems
 - large footprint control domain with full TCP/IP stack management interfaces
 - all virtual IO queues are multiplexed through the hostOS
 - 1-2GB memory footprint + 2 or more physical cores reserved just for management domain

Designing a rackscale low power SoC Hypervisor

MPSoC, Annecy, July 5th 2017.

System software architecture

- Clustered Hypervisor technology, centrally managed nodes with no control domain on each
 - Scale up to many thousands of managed nodes from a single controller
 - Very lightweight raw ethernet-based management interface
- Designed to integrate seamlessly with FPGA co-processor(s) for IO management
 - Software Defined hardware acceleration
- Based on Xen, with a complete re-architecture of VMM IO subsystem and the management/control interface
 - Achieves native hardware IO performance for VMs
- Super-fine grained resource management per core/socket/controller/memory address

MicroVisor integrated architecture

Conapp

FPGA Acceleration Integration - Software Defined Hardware

MPSoC, Annecy, July 5th 2017.

Conapp

Software Defined Hardware - accelerating distributed block storage

OnApp SDS technology today

- Hyper-converged storage solution, built for the OnApp cloud platform
- Each Hypervisor advertises and enables remote access to direct attached storage drives
 - Block path frontend mirrors data across both local and remote paths
 - Failures are tolerated at frontend and resynched in the background across controllers independently
- TCP or ATA over Ethernet protocol used for fast bock access between nodes
- Transparent data relocation/content balancing provided whilst VMs stay online
- Scales across 100s of physical nodes (1000s of drives)
- Thin provisioning, fast snapshot and clone, wide area data replication are standard

Offloading OnApp SDS into an FPGA

- Each FPGA unit directly manages physical NVMe storage
- Lightweight linux management host runs on the embedded ARM cores of the Zynq FPGA processor
 - control stack for the hardware node
 - manage the allocation bitmap for virtual LUNs hosted on the local NVMe storage
 - signal the virtual to physical block map tables to the FPGA
- the FPGA programmable logic handles ATAoE frames directly and maps to/from the NVMe storage
- AoE client signals to the FPGA device extra attributes:
 - Data mirror list for IO writes
 - Data copy command + destination address for resynch of data

Integrated NVMe over Fabric

IO Mirror over AoE path

Storage FPGA Logical Elements

MPSoC, Annecy, July 5th 2017.

Conapp

ACTICLOUD

Logical Packet Processing Flow

Hardware/Software Co-design

- Software client is responsible for runtime signalling
 - extended packet header provides replication MAC address lists
 - packet type indicates READ, WRITE or COPY operation
 - path failure detection handled in software on client side
- A9 control system is responsible for data path setup and volume management
 - slow path for block requests that are not provisioned
 - thin provisioned V2P table updated dynamically
 - executes all the SDS content distribution algorithms
- FPGA PL responsible for fast data path handling
 - process AoE block requests directly to the NVMe storage
 - mirror packets to remote nodes based on packet header lists
 - copy data and forward to remote nodes for fast re-synchronisation of data

Performance Benefits

MPSoC, Annecy, July 5th 2017.

MicroVisor guest Boot time (vs Stock Xen)

- spawn guests in parallel
- start timer at spawn
- stop timer at first ping from the guest (triggered from the last service in the boot chain)

No of VMs

► Conapp 29

VM boot time breakdown

Number of VMs

MPSoC, Annecy, July 5th 2017.

1000 30

MPSoC, Annecy, July 5th 2017.

1 0 0 0 1

Conclusions

- Many core, integrated low power SoC designs are coming to cloud scale DCs
- FPGA acceleration technology features prominently in the roadmap for the DC
 - leveraging hardware acceleration is critical in achieving native hardware performance in upcoming IO interface advances

1 onapp

- OnApp has designed and built a clustered Hypervisor that is designed to support thousands of integrated low power SoC processing nodes with minimal control and management overhead on each node
 - Management system overhead per coherent node is an order of magnitude smaller than a traditional hypervisor system
 - IO architecture is optimised to move IO much more efficiently to centralised hardware processing units
- OnApp is leveraging FPGA acceleration technology to build a hybrid Software Defined Hardware Accelerated Distributed Storage technology

Thanks!

More info: julian@onapp.com https://onapp.com https://acticloud.eu @ACTiCLOUD

1000 33

MPSoC, Annecy, July 5th 2017.

This project has received funding from the European Union's Horizon 2020 research and innovation programme under Grant Agreement no 732366 (ACTiCLOUD)

MPSoC, Annecy, July 5th 2017.

