
A Framework for Reduced Precision
Neural Networks on FPGAs
Kees Vissers
Xilinx Research

© Copyright 2017 Xilinx
.

MPSoC 2017Page 2

Background

CNNs and their challenges

Quantized neural networks

FINN: Framework for fast exploitation of Quantized Neural Networks

Experimental results

Conclusion

© Copyright 2017 Xilinx
.

MPSoC 2017

Programmable devices that contain:

MAC (DSP48) for floating point, 16 bit integer, 8 bit integer

Logic Lookup tables (LUTS) for any function at bit-precision, including

2 bit and 1 bit MAC (xnor, popcount), and compression, security, etc.

Large number of flexible memory blocks, with high internal bandwidth

High-speed I/O, good external memory interfaces

ARM cores

Family of devices

Page 3

What are FPGAs?

… 100ks LUTs

Ks DSPs

LUT
DSP

Customizable hardware architectures with fine-grain programmability

© Copyright 2017 Xilinx
.

MPSoC 2017Page 4

Challenge 1: Diverse Applications with Diverse Design Targets

ADAS

High accuracy

Low latency

Medical

Diagnosis:

Small networks

Robotics:

Real-time

Hearing Aids:

Small network

Low latency

Challenge 1:

Different use cases require different networks & different figures of merits

(speed, latency, energy, accuracy)

Translate &

AlphaGo:

Huge networks

© Copyright 2017 Xilinx
.

MPSoC 2017

Challenge 2: Neural Networks Will Continue to Change

AlexNet (2012)

GoogleNet (2014)

DenseNet (2016)

Number and types of

layers are changing

Graph Connectivity

is changing

Data representations and

quantization methods

are changing

Challenge 2:

Continuous stream of new algorithms

© Copyright 2017 Xilinx
.

MPSoC 2017

Customized ML Processor Datapath

IFM buffers

Flexible (all NNs),

less resources

Higher

performance,

lower latency

Weights,

Thresholds Weights, Thresholds

DSPs, LUTs,…

Generality vs Performance

Latency vs Resources

Customizable

operations

© Copyright 2017 Xilinx
.

MPSoC 2017

The predominant CNN computation is linear algebra

– Demands lots of (simple) computation and lots of parameters (memory)

• AlexNet: 244MB & 1.5GOPS, VGG16: 552MB & 30.8GOPS; GoogleNet: 41.9MB & 3.0GOPS for ImageNet

Page 7

Challenge 3: Highly Compute and Memory Intensive

«cat»

Output(w,h,m) +=

input(w+x,h+y,d)*filter(m,

x,y,d);

Challenge 3:

billions of multiply-accumulate ops & tens of megabytes of parameter data

© Copyright 2017 Xilinx
.

MPSoC 2017

Floating point (FP) CNNs contain a lot of redundancy

Reducing precision is shown to work down to 1b with

minimal loss of accuracy –

– ICLR 2017 with ternary weight networks on par with FP for

AlexNet top-1 and top-5, ResNet20,32,44,56

– Accuracy gap is closing

Reducing precision brings numerous advantageous

– Power

– Performance

– Memory requirements

– Not just for FPGAs

Increasingly Reduced Precision Networks

Page 8

Source: Bill Dally (Stanford), Cadence Embedded Neural

Network Summit, February 1, 2017

© Copyright 2017 Xilinx
.

MPSoC 2017

Accuracy of Quantized Neural Networks (QNNs) Improving
Published Results for FP CNNs, QNNs and binarized NNs (BNNs)

Page 9

• Accuracy results are improving rapidly through for example new training techniques,

topological changes and other methods

0.00

10.00

20.00

30.00

40.00

50.00

60.00

7/6/2009 11/18/2010 4/1/2012 8/14/2013 12/27/2014 5/10/2016 9/22/2017

Top-5 Error (ImageNet)

BNN CNN Reduced Precision

© Copyright 2017 Xilinx
.

MPSoC 2017

Cost per operation is greatly reduced

– For example, for BNN: FP multiply accumulate becomes XNOR with bit counts

Memory cost is greatly reduced

– Large networks can fit entirely into on-chip memory (OCM) (UltraRAM, BRAM)

Today’s FPGAs have a much higher peak performance for reduced precision operations

– FPGA performance is anti-proportional to the cost per operation when applications are sufficiently parallel

– Lower cost per op & massively parallel = more ops every cycle

Potential of Reduced Precision on FPGAs

Page 10

100x

… 100ks LUTs

Ks DSPs

LUT
DSP

Precision Cost per Op

LUT

Cost per Op

DSP

MB

needed

(AlexNet)

TOps/s

(KU115)*

TOps/s

(VU9P)**

TOps/s

(ZU19EG)*

1b 2.5 0 7.6 ~46 ~100 ~66

4b 16 0 30.5 ~11 ~15 ~16

8b 45 0 61 ~3 ~6 ~4

16b 15 0.5 122 ~1 ~4 ~1

32b 178 2 244 ~0.5 ~1 ~0.3

*Assumptions: Application can fill device to 70% (fully parallelizable) 250MHZ

**Assumptions: Application can fill device to 70% (fully parallelizable) 300MHZ

© Copyright 2017 Xilinx
.

MPSoC 2017Page 11

Potential of QNNs on FPGAs (ZU19EG)

66 TOPS

1 TOPS

0.1 TOPS 40 TOPS

Fewer LUTs/op yields to higher

peak performance

Staying on-chip to achieve

more of the peak

Assumption: Operational Intensity for 8b and 1b AlexNet, assuming 1.45GOps/image & 61MB & 7.6MB

• Reduced Precision allows to scale NN performance on FPGAs

to unprecedented levels

© Copyright 2017 Xilinx
.

MPSoC 2017Page 12

Exploitation of Quantized Neural Networks through

FINN: A Framework for Fast, Scalable Neural Network Inference

https://arxiv.org/abs/1612.07119
http://arxiv.org/abs/1701.03400

https://arxiv.org/abs/1612.07119
http://arxiv.org/abs/1701.03400

© Copyright 2017 Xilinx
.

MPSoC 2017

Custom-tailored hardware

–Customized data types

–Customized dataflow architecture to match

network topology

Keep all parameters on-chip, if

possible

C++ design entry

–To support portability, scalability & rapid

exploration

Page 13

FINN Design Principles

1MOPS

10MOPS

1PE
10PE

Customized Dataflow Architecture

© Copyright 2017 Xilinx
.

MPSoC 2017Page 14

Work Flow for Exploration of NNs of FPGAs

• All code in C/C++

• Can execute on CPU and FPGA

- No RTL needed

• Integration with tiny-dnn and

Theano, Tensorflow and Caffe

Fast workflow, integrated with standard framework, with flexibility

to support different topologies, sizes, rates, resources with different

devices (Z7045, KU115, Z7020)

© Copyright 2017 Xilinx
.

MPSoC 2017Page 15

Experimental Results

– Embedded platforms (Zynq Z7045 & 7020): ZC706, PYNQ open source platform

– Server class accelerator: ADM_PCIE_8K5 & TUL Accel. kit in OpenPOWER (& x86 with

SDAccel)

© Copyright 2017 Xilinx
.

MPSoC 2017Page 16

Input Data

• MNIST

handwritten digits • Streetview house

numbers

• Cifar-10: cats,

dogs, etc

• Playing cards

• Imagenet

• German road

signs

• PASCAL VOC

© Copyright 2017 Xilinx
.

MPSoC 2017

Multilayer Perceptron

– Input images: 28x28 pixels, black-white (MNIST)

– Up to 5.8MOPS/frame

VGG-16 derivative

– Input images: 32x32 pixels, RGB image (SVHN, CIFAR-10,

traffic signs, playing cards)

– Up to 1.2GOPS/frame

DorefaNet

– Input images: 226x226 pixels, RGB (ImageNet)

– Up to

YoloV2, TinyYolo

– Input images: 448x448, RBG (VOC, COCO)

– 35 and 7GOPS/frame

Page 17

Test Networks

© Copyright 2017 Xilinx
.

MPSoC 2017

QNN Results - Latency, Performance/Power

GOPS/Watt

290

(8b)

P4

449

(1b)

KU115

GOPS/Watt

177

(8b)

J-TX2

(*)

Q3

487

(1b)

PYNQ

EmbeddedCloud

Latency

[msec]

J-TX2

(-)

2.2

PYNQ

Embedded

Latency

[msec]

P4

(-)

0.7

KU115

Cloud

7

(8b)

TPU

(*)

102

(8b)

Batch of 128

takes 128 * 3.4ms

=290ms

Batch of 128 takes

128 * 0.15ms

=19ms

*: claimed

-: estimated

© Copyright 2017 Xilinx
.

MPSoC 2017

FINN is open sourced and available at

– https://github.com/Xilinx/BNN-PYNQ

– New features are continuously rolled out

Supported on low cost open source platform Pynq

– Visit www.pynq.io

Easy to use with precooked overlays & examples

– BNNs

1000x faster than Raspberry Pi3

Page 19

PYNQ FINN Open Source Release

Z7020 ARM

FPS

Raspberry Pi3

FPS

17.3 44.3

1.2 2.3

Z7020 FPS

(FPGA)

GOPS/s BRAM LUT Latency

[us]

Power

[W]

LFC 168k 974 112

(80%)

30.6K

(57.6%)

102 <2.5

CNV 3.04k 341 140

(100%)

28.5K

(53.5%)

1580 <2.5

https://github.com/Xilinx/BNN-PYNQ
http://www.pynq.io/

© Copyright 2017 Xilinx
.

MPSoC 2017

Benefits of FPGA implementations:

–Extreme performance with reduced precision

–Low latency through dataflow – no batching needed

–Flexibility

–Low power total solution: keep data on chip, compress data,

compute at reduced precision (good for memory bandwidth too)

Get started with FINN & Pynq

–www.pynq.io

–https://github.com/Xilinx/BNN-PYNQ

Page 20

Summary

http://www.pynq.io/
https://github.com/Xilinx/BNN-PYNQ

© Copyright 2017 Xilinx
.

MPSoC 2017Page 21

The Name of the Game: Designing Hardware-Optimal CNNs
It’s a trade-off…

Performance,

hardware cost,

power

topology, size, training

data, training techniques,

numerical

representations

accuracy

hardware cost/ performance/ power

e
rr

o
r

© Copyright 2017 Xilinx
.

MPSoC 2017

Example: ImageNet Classification
Published Results & Xilinx Research internal Experiments

Page 22

Floating point is too expensive

Below 10% uses ensembles and cost likely prohibitively high

Pareto optimal: 1b – 8b provide good compromises

Pareto optimal

solutions

© Copyright 2017 Xilinx
.

MPSoC 2017

Just reducing precision,

reduce hardware cost &

increases error

Recuperate accuracy by

retraining & increasing

network size

1b, 2b and 4b provide pareto

optimal solutions

Inference Accelerators – Accuracy vs Hardware Cost
for a fixed topology

© Copyright 2017 Xilinx
.

MPSoC 2017

We presented a framework for exploring Neural Networks at any

precision ranging from 32bit Floating Point to 1bit for weight and

activation.

We have shown that for a number of cases optimal networks can use

compute and storage below 8bit!

Lots of scope for research in exploring the design space between

accuracy, performance, cost, power etc.

Very Exciting times for Neural Networks on heterogeneous platforms.

Page 24

Conclusions: We’re only at the start…

© Copyright 2017 Xilinx
.

MPSoC 2017Page 25

Thanks to a large team at Xilinx including Xilinx Research Ireland

© Copyright 2017 Xilinx
.

Page 26

Technical Details on Finn architectures

© Copyright 2017 Xilinx
.

MPSoC 2017

Fully connected layers & convolutional layers are mapped on matrix-vector multiply threshold

units (MVTUs)

MVTUs support OFM (neuron) and folding over weights (synaptic)

Weight and output stationary (weights and popcounts are retained locally)

Max pool units are optionally placed behind MVTUs

Page 27

Architecture of a Matrix-Vector Threshold Unit (MVTU)

Weight folding

OFM

folding

© Copyright 2017 Xilinx
.

MPSoC 2017Page 28

Synthesizable C++ Network Description

void DoCompute(ap_uint<64> * in, ap_uint<64> * out) {

#pragma HLS DATAFLOW

stream<ap_uint<64> > memInStrm("memInStrm");

stream<ap_uint<64> > InStrm("InStrm");

.

.

.

stream<ap_uint<64> > memOutStrm("memOutStrm");

Mem2Stream<64, inBytesPadded>(in, memInStrm);

StreamingMatrixVector<L0_SIMD, L0_PE, 16, L0_MW, L0_MH, L0_WMEM, L0_TMEM>

(InStrm, inter0, weightMem0, thresMem0);

StreamingMatrixVector<L1_SIMD, L1_PE, 16, L1_MW, L1_MH, L1_WMEM, L1_TMEM>

(inter0, inter1, weightMem1, thresMem1);

StreamingMatrixVector<L2_SIMD, L2_PE, 16, L2_MW, L2_MH, L2_WMEM, L2_TMEM>

(inter1, inter2, weightMem2, thresMem2);

StreamingMatrixVector<L3_SIMD, L3_PE, 16, L3_MW, L3_MH, L3_WMEM, L3_TMEM>

(inter2, outstream, weightMem3, thresMem3);

StreamingCast<ap_uint<16>, ap_uint<64> >(outstream, memOutStrm);

Stream2Mem<64, outBytesPadded>(memOutStrm, out);

}

Stream definitions

Layer instantiation

connected by streams

Move image in from PS memory

Move results to PS memory

© Copyright 2017 Xilinx
.

MPSoC 2017Page 29

MVTU

for (unsigned int nm = 0; nm < neuronFold; nm++) {

for (unsigned int sf = 0; sf < synapseFold; sf++) {

#pragma HLS PIPELINE II=1

ap_uint<SIMDWidth> inElem;

if (nm == 0) {

inElem = in.read();

inputBuf[sf] = inElem;

} else {

inElem = inputBuf[sf];

}

for (unsigned int pe = 0; pe < PECount; pe++) {

#pragma HLS UNROLL

ap_uint<SIMDWidth> weight = weightMem[pe][nm * synapseFold + sf];

ap_uint<SIMDWidth> masked = ~(weight ^ inElem);

accPopCount[pe] += NaivePopCount<SIMDWidth, PopCountWidth>(masked);

}

}

ap_uint<PECount> outElem = 0;

for (unsigned int pe = 0; pe < PECount; pe++) {

#pragma HLS UNROLL

outElem(pe, pe) = accPopCount[pe] > thresMem[pe][nm] ? 1 : 0;

accPopCount[pe] = 0; // clear the accumulator

}

Folding

Indexing weight and

threshold memory

binary MAC

Batchnorm

activations

Reading

Inputs or consume

internal (when folded)

© Copyright 2017 Xilinx
.

MPSoC 2017Page 30

Architecture of Infrastructure on Zynq SOC

Processing

System

PS memory FPGA fabric

Streaming

MVTU

Z7020/ ZC7045

