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Outline of this talk
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Let’s predict future and 
improve system management efficiency!

1:  Improve energy efficiency of on-line object tracking

2:  Accelerate performance of control systems



Procedure of on-line object tracking
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Track	an	objectObtain	a	frame

Image	sensor Frame	memory Processor	

Data	bus
1.Writes	a	frame 2.Reads	the	frame



Procedure of on-line object tracking
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Low	speed High	speed Find	the	object

Template	image

Track	an	objectObtain	a	frame

2.	Search	the	object	with	template	matching1.	Decide	a	search-area
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Motivation (1/2)

E

Efetch : Energy required for obtaining frames
Etrack : Energy required for object tracking 
E : Total Energy  (Efetch + Etrack) 

Efetch

Etrack

Best frame-rate for minimizing 
energy consumption 
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Motivation (2/2)

Best frame-rate depends on 
the object speed



Adaptive frame-rate optimization
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Decides frame-rate based on the object speed

Optimize	
the	frame-rateTrack	an	objectObtain	a	frame

timeObject speed is high timeObject  speed is low
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Immediate frame-rate reduction 
worsens tracking accuracy.

window

Maintain the frame-rate IF the 
object speed variation in the 
window exceeds a threshold. 
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Accuracy oriented optimization
Proposed method with optimized frame-rate



Experiments (1/2)

• Methodology
– Simulator implemented by using the OpenCV library

• Benchmark
– Videos : Seven input videos from Tracker Benchmark[1]
– Features : Illumination variation, scale variation, etc.
– Target frames :  ~ 600 frames

• Evaluation models
– FIX：Tracking with fixed frame-rate (30 fps)
– ADAPT ： Adaptive frame-rate optimization

[1]	Yi	Wu,	Jongwoo Lim,	Ming-Hsuan Yang,	“Online	Object	Tracking:	A	Benchmark,”	IEEE	Conference	
on	Computer	Vision	and	Pattern	Recognition	(CVPR),	2013	 9



Experiments (2/2)

• Metrics
– Tracking accuracy

Overlap ratio between two rectangles

– Energy  consumption
Energy model for object tracking system
E = Efetch + Etrack
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Answer	rectangle

Estimated	rectangle
A∩E
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FIX ：Tracking	with	fixed	frame-rate	(30	fps)
ADAPT	： Adaptive	frame-rate	optimization
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Outline of this talk
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Let’s predict future and 
improve system management efficiency!

1:  Improve energy efficiency of on-line object tracking

2:  Accelerate performance of control systems



System

Feedback Control Systems

Controller Actuator Plant
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System 
Output

Reference

Sensor

Attempts to make the “Measured 
Output” close to “Reference”

System States

Real-Time Model Predictive Control (MPC)
• Features
– Involves state equations (or plant models) in the controller
– Decide how to manipulate the actuator based on predicted future plant behavior by solving 

optimal control problems
– Needs to satisfy real-time periodical operations

• Problem
– O(N3) computational complexity

Plant	
Models

System 
Inputs



Overview of Model Predictive Control
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time

t1 t2

t1 t2 t2+T

System
State x(t)

Prediction Horizon Reference r(t)

Predicted
Output x*(t)

Predicted
System Input u*(t)

Sampling
Time



Can Manycore be a Solution?
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Data-Level Parallelism
èNO!

Small size data are fed 
sequentially! 

Sensors SystemCPU

Predicted 
System Output

Inputs depend on 
previous computations

・・・

Thread-Level Parallelism
èNO!

Each step is executed 
sequentially!

t1 t1+T

Predicted 
System Input



Our Approach
~ Speculative Execution on Manycore ~

[Conventional]
Spatial Parallel Exe.

Input Data 
Arrive

t

[Proposed]
Temporal Parallel Exe. 

w/ Input Value Prediction

Exe. on a core

Exe. on a core

Exe. on a core

Exe. on a core

Exe. on a core

Input 
Data 

Arrive

Exe.	Time Exe.	Time

Input 
Data 

Arrive

Exe.	Time

Input Data 
Predicted

Input Data 
Arrive

Exe.	Time

t



How Can We Predict Input Data
for Speculative Executions?

17

Use most recently generated 
“Predicted Output”

x1 x2 X3 X4

Execution
Flow

System
State

(from sensors)

t1 t2 t3 t4 t

Exe. of MPC (x1)

Exe. of MPC (x2)

Exe. of MPC (x3)

t

t5

Exe. of MPC (x4)

Dead Line 
(x1)

Dead Line
(x2)

Dead Line
(x3)

Dead Line
(x4)

core
#1
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core
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core
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time

Measured
Output x(t)
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Predicted
Output x*(t)
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Experimental Setup

• Target 3 control systems
• Implement on a Xeon-Phi manycore platform



Implementation Results

• Does not have any redundant cores.
• Implement a dedicated thread for prediction 

purpose.
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Single	core

Conventional

Proposed

Arm-type	pendulum



Conclusions

• You can predict physical world!
• Predict sensor inputs, and then:
– Improve energy efficiency,
– Boost system performance,
– and so on.

• X-layer optimization (sensing and controlling) 
is a key challenge!
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