
Predictive Sensing and Adaptive Management
For Real-Time Applications

Koji Inoue
Kyushu University

1

Outline of this talk

2

Let’s predict future and
improve system management efficiency!

1: Improve energy efficiency of on-line object tracking

2: Accelerate performance of control systems

Procedure of on-line object tracking

3

Track	an	objectObtain	a	frame

Image	sensor Frame	memory Processor	

Data	bus
1.Writes	a	frame 2.Reads	the	frame

Procedure of on-line object tracking

4

Low	speed High	speed Find	the	object

Template	image

Track	an	objectObtain	a	frame

2.	Search	the	object	with	template	matching1.	Decide	a	search-area

0.0E+00

1.0E-05

2.0E-05

3.0E-05

4.0E-05

5.0E-05

0 5 10 15 20 25 30

E
ne

rg
y

co
ns

um
pt

io
n

[J
]

Frame-rate [fps]

E

Ef�FR

Et�FR

5

Motivation (1/2)

E

Efetch : Energy required for obtaining frames
Etrack : Energy required for object tracking
E : Total Energy (Efetch + Etrack)

Efetch

Etrack

Best frame-rate for minimizing
energy consumption

0.00E+00

5.00E-05

1.00E-04

1.50E-04

2.00E-04

0 5 10 15 20 25 30

E
ne

rg
y

co
ns

um
pt

io
n

[J
]

Frame-rate [fps]

v=50[pix/s]
v=40[pix/s]
v=30[pix/s]
v=20[pix/s]
v=10[pix/s]

6

Motivation (2/2)

Best frame-rate depends on
the object speed

Adaptive frame-rate optimization

7

Decides frame-rate based on the object speed

Optimize	
the	frame-rateTrack	an	objectObtain	a	frame

timeObject speed is high timeObject speed is low

O
bj
ec
t	s
pe

ed
�

O
bj
ec
t	s
pe

ed
�

8

Immediate frame-rate reduction
worsens tracking accuracy.

window

Maintain the frame-rate IF the
object speed variation in the
window exceeds a threshold.

time time

O
bj

ec
t

sp
ee

d

O
bj

ec
t

sp
ee

d

time time

Accuracy oriented optimization
Proposed method with optimized frame-rate

Experiments (1/2)

• Methodology
– Simulator implemented by using the OpenCV library

• Benchmark
– Videos : Seven input videos from Tracker Benchmark[1]
– Features : Illumination variation, scale variation, etc.
– Target frames : ~ 600 frames

• Evaluation models
– FIX：Tracking with fixed frame-rate (30 fps)
– ADAPT ： Adaptive frame-rate optimization

[1]	Yi	Wu,	Jongwoo Lim,	Ming-Hsuan Yang,	“Online	Object	Tracking:	A	Benchmark,”	IEEE	Conference	
on	Computer	Vision	and	Pattern	Recognition	(CVPR),	2013	 9

Experiments (2/2)

• Metrics
– Tracking accuracy

Overlap ratio between two rectangles

– Energy consumption
Energy model for object tracking system
E = Efetch + Etrack

10

Answer	rectangle

Estimated	rectangle
A∩E

0

20

40

60

80

100
Tr
ac
kin

g	a
cc
ur
ac
y	[
%
]

FIX ADAPT

Tracking accuracy

11

FIX ：Tracking	with	fixed	frame-rate	(30	fps)
ADAPT	： Adaptive	frame-rate	optimization

0.00	
0.25	
0.50	
0.75	
1.00	
1.25	
1.50	

No
rm

al
ize

d	
en
er
gy
	co

ns
um

pt
io
n

FIX ADAPT

Outline of this talk

12

Let’s predict future and
improve system management efficiency!

1: Improve energy efficiency of on-line object tracking

2: Accelerate performance of control systems

System

Feedback Control Systems

Controller Actuator Plant

13

System
Output

Reference

Sensor

Attempts to make the “Measured
Output” close to “Reference”

System States

Real-Time Model Predictive Control (MPC)
• Features
– Involves state equations (or plant models) in the controller
– Decide how to manipulate the actuator based on predicted future plant behavior by solving

optimal control problems
– Needs to satisfy real-time periodical operations

• Problem
– O(N3) computational complexity

Plant	
Models

System
Inputs

Overview of Model Predictive Control

14

time

t1 t2

t1 t2 t2+T

System
State x(t)

Prediction Horizon Reference r(t)

Predicted
Output x*(t)

Predicted
System Input u*(t)

Sampling
Time

Can Manycore be a Solution?

15

Data-Level Parallelism
èNO!

Small size data are fed
sequentially!

Sensors SystemCPU

Predicted
System Output

Inputs depend on
previous computations

・・・

Thread-Level Parallelism
èNO!

Each step is executed
sequentially!

t1 t1+T

Predicted
System Input

Our Approach
~ Speculative Execution on Manycore ~

[Conventional]
Spatial Parallel Exe.

Input Data
Arrive

t

[Proposed]
Temporal Parallel Exe.

w/ Input Value Prediction

Exe. on a core

Exe. on a core

Exe. on a core

Exe. on a core

Exe. on a core

Input
Data

Arrive

Exe.	Time Exe.	Time

Input
Data

Arrive

Exe.	Time

Input Data
Predicted

Input Data
Arrive

Exe.	Time

t

How Can We Predict Input Data
for Speculative Executions?

17

Use most recently generated
“Predicted Output”

x1 x2 X3 X4

Execution
Flow

System
State

(from sensors)

t1 t2 t3 t4 t

Exe. of MPC (x1)

Exe. of MPC (x2)

Exe. of MPC (x3)

t

t5

Exe. of MPC (x4)

Dead Line
(x1)

Dead Line
(x2)

Dead Line
(x3)

Dead Line
(x4)

core
#1

core
#1

core
#1

core
#2

time

Measured
Output x(t)

t1 t2 t1+T

Predicted
Output x*(t)

t3

Experimental Setup

• Target 3 control systems
• Implement on a Xeon-Phi manycore platform

Implementation Results

• Does not have any redundant cores.
• Implement a dedicated thread for prediction

purpose.

19

Single	core

Conventional

Proposed

Arm-type	pendulum

Conclusions

• You can predict physical world!
• Predict sensor inputs, and then:
– Improve energy efficiency,
– Boost system performance,
– and so on.

• X-layer optimization (sensing and controlling)
is a key challenge!

20

