Predictive Sensing and Adaptive Management
For Real-Time Applications

Koji Inoue
Kyushu University

Outline of this talk

Let’s predict future and
improve system management efficiency!

|: Improve energy efficiency of on-line object tracking

2: Accelerate performance of control systems

Procedure of on-line object tracking

|—> Obtain a frame > Track an object J

Image sensor Frame memory Processor

1.Writes a frame I 2.Reads the frame T

Data bus

Procedure of on-line object tracking

|—> Obtain a frame

1. Decide a search-area

5

|

Low speed

High speed

> Track an object J

2. Search the object with template matching

>

Template image

([&

5

y

5

-

Find the object }

Motivation (1/2)

E....t, : Energy required for obtaining frames
E..... : Energy required for object tracking

track °

E :Total Energy (Ei.; * E.ac)

5.0E-05

Best frame-rate for minimizing
energy consumption

4.0E-05

3.0E-05

2.0E-05

1.0E-05

Energy consumption [J]

0.0E+00 T T T | |
0 5 10 15 20 25

Frame-rate [fps]

Energy consumption [J]

2.00E-04

1.50E-04 A

1.00E-04 A

5.00E-05 -

0.00E+00

Motivation (2/2)

Best frame-rate depends on
the object speed

0

5 10 15 20 25 30
Frame-rate [fps]

Adaptive frame-rate optimization

Optimize
the frame-rate

L Obtain a frame > Track an object >

Decides frame-rate based on the object speed

) 2o

Object speed is high time Object speed is low time

Accuracy oriented optimization

Proposed method with optimized frame-rate

window

Object speed
Obiject speed

time

Immediate frame-rate reduction Maintain the frame-rate IF the
worsens tracking accuracy. object speed variation in the
window exceeds a threshold.

Experiments (1/2)

* Methodology
— Simulator implemented by using the OpenCV library

 Benchmark
— Videos : Seven input videos from Tracker Benchmark][1]
— Features : lllumination variation, scale variation, etc.

— Target frames : ~ 600 frames

* Evaluation models
— FIX : Tracking with fixed frame-rate (30 fps)
— ADAPT : Adaptive frame-rate optimization

[1] Yi Wu, Jongwoo Lim, Ming-Hsuan Yang, “Online Object Tracking: A Benchmark,” IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), 2013

Experiments (2/2)

e Metrics

— Tracking accuracy

Overlap ratio between two rectangles

Accuracy =

area(A) n area(E)

| Estimated rectangle
Rl

G

— Answer rectangle

area(A) U area(E)

— Energy consumption

X 100 [%]

Energy model for object tracking system

E= Efetch +E

track

100
80
60
40
20

Tracking accuracy [%]

o

1.50
1.25
1.00
0.75
8 0.50
(]

S 0.25
© 0.00

consumption

d

Normaliz

Tracking accuracy

FIX :Tracking with fixed frame-rate (30 fps)

W FIX E ADAPT ADAPT : Adaptive frame-rate optimization

LTI

> e [v
&9 & & & ,gb & \\Q,@
Y S NS SV 3
B FIX OADAPT
A\ e a
9 R R
0 6 0 (.c > Z
Q Q ~ &o &O & \&s 5
% % Q¥ S\ Q%o y

Outline of this talk

Let’s predict future and
improve system management efficiency!

|: Improve energy efficiency of on-line object tracking

2: Accelerate performance of control systems

Feedback Control Systems

Plant [Attempts to make the “Measured J
Models Output” close to “Reference”

Reference System

Output

Actuator

Controller
System

Inputs System

System States m

Real-Time Model Predictive Control (MPC)

* Features
— Involves state equations (or plant models) in the controller

— Decide how to manipulate the actuator based on predicted future plant behavior by solving
optimal control problems

— Needs to satisfy real-time periodical operations

* Problem
— O(N?3) computational complexity

Overview of Model Predictive Control

Prediction Horizon
/ < > Reference r(ﬁ

Predicted
System
State x(t) /O Output 38l

/ — T Sampling

........ Predicted Time
System Input u™(t) A
| | | | | | |

I I
% ! time/

Can Manycore be a Solution!?

Data-Level Parallelism Thread-Level Parallelism
= NO! =>NO!
Small size data are fed Each step is executed
sequentially! sequentially!
Inputs depend on Predicted
previous computations System Output
ﬂ. O@@
Sensors — C_ » System . Predicted
» System Input
: t, t,+T

Our Approach
~ Speculative Execution on Manycore ~

[Conventional]

Spatial Parallel Exe.

Exe. Time Exe.Time Exe.Time

.—>.—>:

|
Input Data Input Input
Arrive Data Data
Arrive Arrive

[Proposed]
Temporal Parallel Exe.

w/ Input Value Prediction
Exe Time

Exe. on a core
Exe. on a core
I

[
Exe. on a core —)l
—
|
Exe.on a cora | g8

Exe.on a tore

Input Data Input Data
Predicted Arrive

How Can We Predict Input Data

for Speculative Executions?

System
State
(from sensors)

t,
|

" Measured Predicted h
Output x(t) Output x*(t)
Use most recently generated
-+ttt . “Predicted Output”
t)) Lok t,+T)

O
' | | | |
Ll D X X,

\ "“ Dead Liine Dead LiZne Dead Liine Dead Li

ne

core

Execution| ! ‘

Flow core

#2

Ta
]
.........

b
Exe. of MPC (x,) Exe. of MPC (x;)

\ iu. (x1) Nl (x2) gk (x3) * (x4) gﬂ

Exe. of MPC (x,) Exe. of MPC (x,)

Experimental Setup

* Target 3 control systems

* Implement on a Xeon-Phi manycore platform

Stand 0 Stand1 Stand2
Uyg,
p— B— 5600
i Start position 5500 | 9
A oo .
! ! 4500 | 4
| [N/ Us,
: = 4000 . . °
! E 3500 i
1
. @ .g-c 3000 0 oL, {)
! u > 2500
: : 2000 [oofot e AL L L] e
) 12 1500
.......................... i X
Balanced position; 1~ - > ; 1000)
..................................... H i 500 -
: 0 5 10 15 20 25 30 35i
time [s] :
L,

(a) Nonlinear spring (b) Arm-type pendulum' (c) Tandem cold mill

Implementation Results

* Does not have any redundant cores.

* Implement a dedicated thread for prediction
purposec. Arm-type pendulum

SC “ mc-conv. * mc-prop-ipns ° mc-prop-ipns w/o overhead —*ideal
1.2

Single core

1™
l Conventional

o

8

04 \ Proposed
0.2 . -

Normalized computation time
o
(o)]

*fg
0 B S S —R=2—%
. s 10 15 20 25

The number of cores

Conclusions

* You can predict physical world!

* Predict sensor inputs, and then:
— Improve energy efficiency,
— Boost system performance,

— and so on.

* X-layer optimization (sensing and controlling)
is a key challenge!

