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Outline of this talk

Let’s predict future and
improve system management efficiency!

|: Improve energy efficiency of on-line object tracking

2: Accelerate performance of control systems



Procedure of on-line object tracking

|—> Obtain a frame > Track an object J

Image sensor Frame memory Processor

1.Writes a frame I 2.Reads the frame T

Data bus




Procedure of on-line object tracking

|—> Obtain a frame

1. Decide a search-area

5

|

Low speed

High speed

> Track an object J

2. Search the object with template matching

>

Template image

([ &

5

y

5

-

Find the object }




Motivation (1/2)

E....t, : Energy required for obtaining frames
E..... : Energy required for object tracking
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Energy consumption [J]
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Motivation (2/2)

Best frame-rate depends on
the object speed
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Adaptive frame-rate optimization

Optimize
the frame-rate

L Obtain a frame > Track an object >

Decides frame-rate based on the object speed
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Object speed is high time Object speed is low time




Accuracy oriented optimization

Proposed method with optimized frame-rate

window

Object speed
Obiject speed

time

Immediate frame-rate reduction Maintain the frame-rate IF the
worsens tracking accuracy. object speed variation in the
window exceeds a threshold.



Experiments (1/2)

* Methodology
— Simulator implemented by using the OpenCV library

 Benchmark
— Videos : Seven input videos from Tracker Benchmark][ 1]
— Features : lllumination variation, scale variation, etc.

— Target frames : ~ 600 frames

* Evaluation models
— FIX : Tracking with fixed frame-rate (30 fps)
— ADAPT : Adaptive frame-rate optimization

[1] Yi Wu, Jongwoo Lim, Ming-Hsuan Yang, “Online Object Tracking: A Benchmark,” IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), 2013



Experiments (2/2)

e Metrics

— Tracking accuracy

Overlap ratio between two rectangles

Accuracy =

area(A) n area(E)

| Estimated rectangle
Rl
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— Answer rectangle

area(A) U area(E)

— Energy consumption

X 100 [%]

Energy model for object tracking system

E= Efetch +E
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Feedback Control Systems

Plant [ Attempts to make the “Measured J
Models Output” close to “Reference”

Reference System

Output

Actuator

Controller
System

Inputs System

System States m

Real-Time Model Predictive Control (MPC)

* Features
— Involves state equations (or plant models) in the controller

— Decide how to manipulate the actuator based on predicted future plant behavior by solving
optimal control problems

— Needs to satisfy real-time periodical operations

* Problem
— O(N?3) computational complexity




Overview of Model Predictive Control
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Can Manycore be a Solution!?

Data-Level Parallelism Thread-Level Parallelism
= NO! =>NO!
Small size data are fed Each step is executed
sequentially! sequentially!
Inputs depend on Predicted
previous computations System Output
ﬂ. O@@
Sensors — C_ » System . Predicted
» System Input
: t, t,+T




Our Approach
~ Speculative Execution on Manycore ~

[Conventional]
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How Can We Predict Input Data

for Speculative Executions?
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Experimental Setup

* Target 3 control systems

* Implement on a Xeon-Phi manycore platform
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Implementation Results

* Does not have any redundant cores.

* Implement a dedicated thread for prediction
purposec. Arm-type pendulum
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Conclusions

* You can predict physical world!

* Predict sensor inputs, and then:
— Improve energy efficiency,
— Boost system performance,

— and so on.

* X-layer optimization (sensing and controlling)
is a key challenge!



