Energy Efficient Network-on-Chips with Opportunistic Circuit-Switching for MPSoCs

Masaaki Kondo and Yuan He

Graduate School of Information Science and Technology, The University of Tokyo

- NoCs are becoming the communication backbones for Manycore Processor SoCs
- Needs for scalable / efficient NoCs
 - Size and complexity of NoCs grows as the number of cores increases
 - Performance and power consumption of NoCs are critical to the system
 - It is reported that NoC consumes large portion of total chip power
- Up to date, most NoC designs employ Virtual Channel (VC) flow control for better utilization of link bandwidth
 - Each physical link is bundled with several VCs while each VC is a set of buffers used to store network traffic
 - NoC power is dominated by such VCs (buffers)
 - Using VCs also incurs longer per-hop latency

Background and Motivation (1/2)

- Existing solutions to reduce power for VC flow control
 - OVFS (for dynamic power) and Power-Gating (for static power)
 - Substance With Sector Secto
 - ▶ ⊗ c.f.) low latency router designs: more power hungry
- Modern NoCs with VC is relatively bandwidth plentiful
 - Full link width with VC flow control can be an overkill
- Objective of this research
 - Propose to utilize both VC and circuit-switching (CS)
 - CS requires explicit channel acquisition which deteriorates NoC bandwidth
 - Take the advantages of both VC and CS while removing CS setup
 - Reduce both dynamic and static power consumption while maintaining low latency operation

Background and Motivation (2/2)

Virtual Channel vs Circuit Switching

Virtual Channel (VC)

- Buffered
- Deep pipeline
- Per-hop based routing
- ORich bandwidth
- ⊗Power hungry

Circuit Switching (CS)

- Bufferless
- One cycle per router
- Explicit route set-up
- [©]Poor bandwidth
- Over efficient

Latency and Bandwidth Comparison

Network latency vs. packet injection rate

- VC flow control is rich in bandwidth
- Traditional CS has poor bandwidth and network latency
- CS without set-up can potentially achieve the lowest latency

Opportunistic Circuit-Switching (OCS)

- Basic Concept
 - Preset the route using predictions to form circuits in each router
 - No explicit setup to acquire a channel
 - Verified with actual routes at packet traversal in the router
 - Prediction hit: a flit traverses like CS without buffer write
 - Prediction miss: use traditional VC flow control with buffer write

Benefit of OCS

- Dynamic power saving at the buffers
- Static power saving due to longer power-gating interval for buffers
- Improved network latency by bypassing router pipeline

Schematic Design of the OCS Router

Required extension to routers for OCS

- History buffer to store the latest past routes
- Extra wires and multiplexers for packets to bypass the VC
- Extra wires to issue grant signals when OCS hit
- OCS is cancelled if the downstream router has no credit (packet is stored in the buffer on the current router)

Behavior of NoC with Opportunistic Circuit-Switching

► Case for Hit → Miss → Hit

- 1 OCS Hit: a flit traverses a router within one cycle without buffering
- it traverses the link to the next router
- 3 OCS Miss: it is transmitted under VC flow control
- ④ It is written to the buffer in the current router
- 5 VA is taken for the next hop
- 6 It goes through the three remaining pipeline stages
- OCS Hit again

Scheduled Injection and Cycle-Aware Route-Reuse (SICR)

- Hit rate for reusing past routes is the key for OCS
- Improving the hit rate by SICR
 - Use multiple predicted/predefined routes according to cycle number
 - Control packet injection timing expecting cycle-specific predicted or predefined routes are used at routers coming at different cycles

Evaluation Methodology

- Simulated on a 16-core system
 - GEMS/Simics with GARNET (network) and McPAT (power)

Memory

Router

- Network under 2D mesh topology
 - 128-bit link width
 - X-Y routing
 - 4-cycle pipeline for VC
- Process parameter
 - 32nm technology
 - Three device types
 - High performance (HP)
 - Low standby power (LSP) Memory
 - Low operating power (LOP)
- Workload from SPLASH-2 and NPB 3

Memory

Memory

Core/L1\$

L2\$/Directory

Mem. Controller

NI

Link

Router

Evaluation Result – Network Latency

Network latency per flit under different NoC designs

- VC+PG slows down the network significantly
- Latency reduction by OCS
 - Applying OCS and PG together alleviates the latency issue of PG
- Slight latency increase with PG or SICR due to latency overhead

Evaluation Result – Throughput

System throughput normalized to original VC

- OCS can provide more than 25% of improvement on throughput
- In OCS+PG, improvement drops but still about 10%
- VC+PG degrades system throughput by about 20%

Evaluation Result – Energy Consumption

System energy normalized to original VC

- Energy reduction by around 20% for all three device types
 - Large energy saving even including processor energy consumption
- OCS alone results in the smallest energy footprint
 - PG and/or SICR have performance impact

Summary

- We questioned the necessity of virtual channel flow control
- Opportunistic Circuit-Switching
 - Preset the route using predictions to form circuits in each router based on the past route history
 - A flit traverses like circuit switching when prediction hits
- Evaluation with cycle level simulation
 - About 25% throughput improvement
 - About 20% system energy reduction
- Future work
 - Consider better routes prediction strategies
 - Evaluate OCS under various network configurations