17th INTERNATIONAL FORUM ON MPSoC

A Wearable Biomedical Sensing System with Normally-off Computing Architecture

July 5, 2017 Masahiko Yoshimoto Kobe University

Outline

Background

- Design Issues and Design Features
- Low Power VLSI Design for ECG and Tri-axial Acceleration Monitoring
- Fabrication & Field Testing Results

Summary

Population of more than 65 years old

Suppresion of lifestyle desease

Biomedical data for physical activity estimation

- Triaxial Acceleration
- Instantaneous Heart Rate (IHR)
 = 60 / (latest RR[s]) [bpm]

Energy expenditure is estimated by the above two kind of biosensing data.

Ex) Triaxial acceleration measurement

Development of wearable bio-medical sensor

Requirements

→ Low power, Small size and Light weight

Design issues

Ultra low power consumption for longer life operation with tiny battery.

Noise tolerant IHR(Instantaneous Heart Rate) Monitoring at short distance electrode condition to realize wearable small size sensor.

Design Features

Non-volatile memory and Non-volatile MCU(Micro-Control Unit) for normally-off computing

Algorithm of noise-tolerant IHR(Instantaneous Heart Rate) extraction

Normally-off computing

	Frequency component	
ECG	0.1 - 150Hz	CPU CPU MPU etc
EEG	0.5 - 60Hz	
VEP	0.5 - 60Hz	
EMG	few kHz	

- Extremely Low frequency range of Bital signal
- → Standby power reduction is effective

Non-volatile FeRAM was employed to suppress standby leak.

VLSI block diagram of bio-medical sensor

Normally-off computing with Non-volatile memory

6T-4C non-volatile memory

Design issue of 6T-4C non-volatile memory

Circuit technolgy for power reduction

1.Bit-line Non-precharge →Reducing the active energy consumption

2.Plate-line Charge sharing \rightarrow Reducing the turning-on/off energy consumption

Bit-line Non-precharge

Proposed method

Connecting a bit-line pair w/ switch

The energy consumption for charging is reduced

Plate-line Charge share

Power reduction of 6T4C memory

Improvement of Break-even time

VLSI block diagram of bio-medical sensor

Non-volatile logic

NVFF has capability to retain a logic state w/o power supply.

Ferroelectric capacitor retains data during power off state.

Basic operation

Logic op: NVCPU executes instruction in NVRAM at 24MHz.STORE: Logic state in NVFF is written into FE capacitors.RECALL: Logic state is recovered from FE capacitors.

Power dissipation of non-volatile MCU

Non-volatile Flip-Flop circuit (NVFF) is useful to reduce power dissipated in the MCU for vital sensor application.

Design features

Non-volatile memory and Non-volatile MCU(Micro-Control Unit) for normally-off computing

Algorithm of noise-tolerant IHR(Instantaneous Heart Rate) extraction

Various noises in ECG wave

QSWT filter for noise suppression

Algorithm of noise torelant IHR extraction

Coarse-fine QRS template generation and template matching with QRS prediction.

Success rate evaluation of IHR extractor

The IHR extractor can also suppress motion artifact and muscle artifacts.

Photo of VLSI wearable bio-medical sensor

Experimental wearable bio-medical sensor

Measurement results

Power reduction in sensor module

Technical position of the bio-medical sensor

Accuracy

Summary

- The wearable bio-medical sensor has been developed, which features heart rate monitoring and tri-axial acceleration using newly developed low power SoC.
- Non-volatile MCU for normally-off computing and noisetolerant IHR detection algorithm have been employed for ECG-SoC design.
- The fully integrated ECG-SoC consumes 6.14µA for ECG monitoring and the sensor system dissipates 20uA, allowing 2-weeks continuous sensing only using a 10-mAh thin-type lithium-ion battery.
- The activity classification using data from field testing attains ~90% accuracy.

Author would like to thank OMRON HEALTHCARE Co., Ltd for algorithm and software development and ROHM SEMICONDUCTOR for fabrication of SoC and experimental module.

This research was supported by Ministry of Economy, Trade and Industry (METI) and the New Energy and Industrial Technology Development Organization (NEDO).