

Processor Solutions for Energy-Efficient IoT Applications

Pieter van der Wolf

MPSoC 2017 July 2 – 7, 2017

(a, b) (a, b)

IoT applications

Sensor processing and voice / audio

Wireless connectivity

Security

Conclusion

From the Edge to the Cloud

IoT Edge Devices (Smart Devices)

"Things" with sensors & actuators that monitor and control

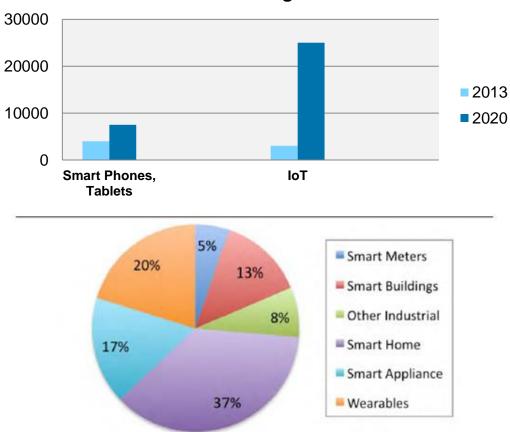
Aggregation Layers (Hubs/Gateways)

Connectivity & Interfaces to aggregate the edge data to send to the cloud

Remote Processing (Cloud Based)

Applications to analyze the data and offer cloud services

IoT Edge Device Market


Internet of Things and its Attractive Growth...

- 5B people connected by 2020¹
- 11.5% CAGR through 2022 for IoT Chip Market (\$4.6 -> \$10.8B)
- 50%+ Volume driven by Smart Home and Wearables³
- 55% Global IoT security market growth through 2019⁴
- \$7.4B and over 887 deals to IoT startups since 2010^5

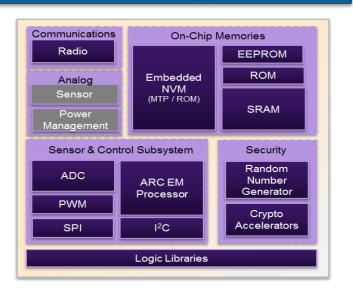
Fragmented Market..... Key Applications Drive Innovation

- Mobile handsets drive interoperability (WiFi, Cellular, Bluetooth)
- Regulations & Standards drive security
- Wearables drive energy efficiency
- Drive for low-cost in high-volume markets

Source¹: World Economic Forum Source²: Market and Markets Source³: Linley 2016 IoT Report Source⁴: Marketresearchreports.biz Source⁵: CB Insights

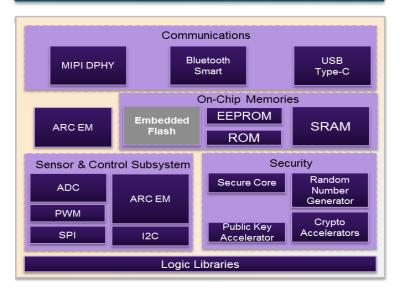
Billions of "Things" in use*

2021: 2.2 billion units

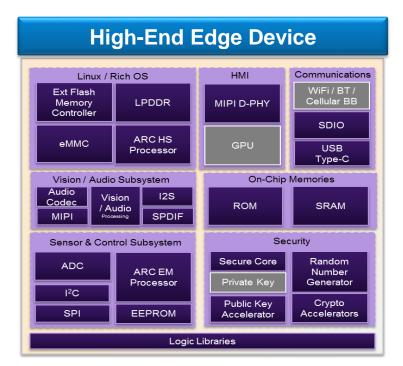

Figure 4-1. IoT unit share by market segment, 2021. We project the consumer-driven smart home and wearables segments to be the largest contributors. (Source: The Linley Group)

Example IoT SoC Architectures

Corral the Market Fragmentation


Smart Analog Device

- Bare Metal
- 180nm some 130/90nm



Low-End Edge Device

- RTOS: FreeRTOS, Zephyr, Rocket, Contiki....
- Integrated Radio
- 90nm → 55nm & 40nm (0.9v)

- Linux, Android
- 65nm → to 28nm-16nm

SYNOPSYS[®]

IoT Innovation Driving Design Requirements

			*
Sensor Processing	Wireless Connectivity	Security	Energy Efficiency
How much processing is needed to balance cost & performance?	What de-facto standards will emerge?	Pervasive security needed but what exactly is required?	Add processing, connectivity & security while extending battery life

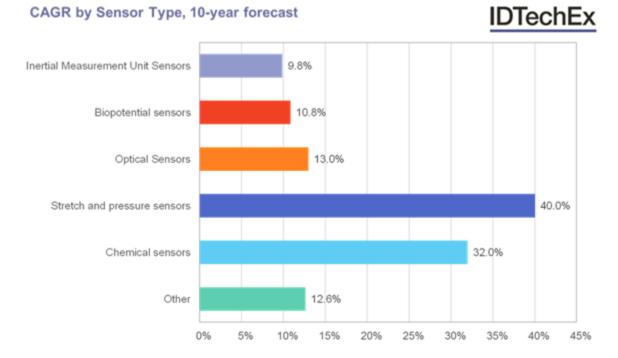
Successful strategy for IoT needs to address all of these requirements

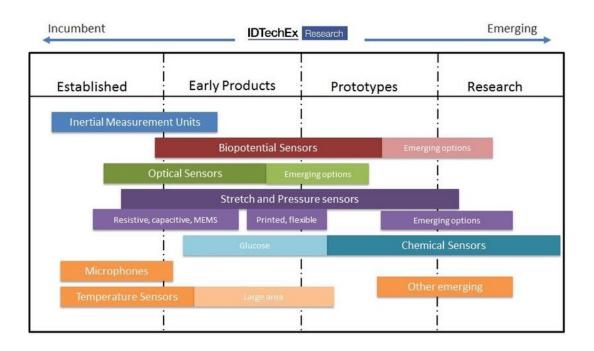
IoT applications

Sensor processing and voice / audio

Wireless connectivity

Security


Conclusion

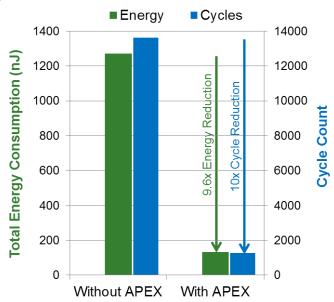

Wearable Sensors

Future Sensors Market Estimations

• "The market for wearable sensors will reach \$6.1bn by 2026"

SOURCE: The IDTechEx Research report - "Wearable Sensors 2016-2026: Market Forecasts, Technologies, Players"

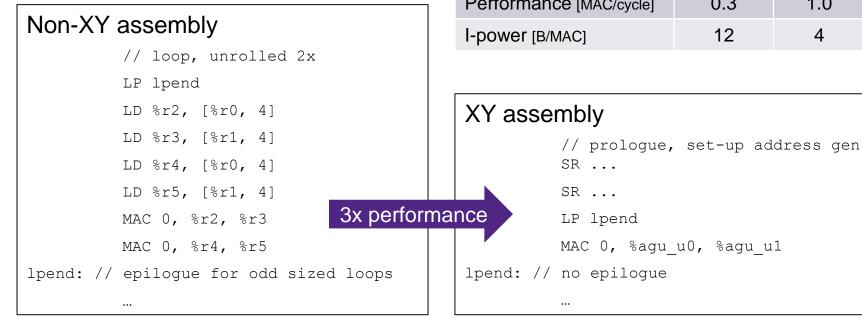
For more information, see the IDTechEx Research report: Wearable Sensors 2015-2025: Market Forecasts, Technologies, Players (www.IDTechEx.com/WTSensors)

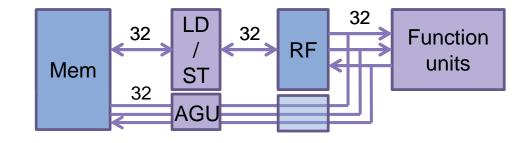


Low-power DSP for IoT

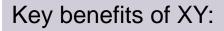
Key processor features

- Energy efficiency
 - Low power consumption \rightarrow low μ W/MHz
 - -High cycle efficiency \rightarrow low MHz
- Key processor features
 - Processor architecture / ISA
 - For low power consumption and high cycle efficiency for targeted application
 - For small code size
 - -Memory architecture
 - For reducing accesses to instruction and data memories
 - Configurability
 - Allow hardware features to be (de-)configured
 - For best balance of efficiency and area / power
 - Extensibility
 - Allow extension with customer-specific instructions
 - For high cycle efficiency


XY for higher DSP performance



And lower I-memory power


C source code

```
q31_t foo(__xy q31_t *b, __xy q31_t *c) {
  q31 t s = 0;
   for (i = 0; i < N; i++)
     s += b[i] * c[i]
   return s;
```


	Non-XY	XY
Performance [MAC/cycle]	0.3	1.0
I-power [B/MAC]	12	4

- Higher DSP performance
- Lower I-memory power
- Smaller code size

XY and multi-issue architectures

Code size and I-memory power

C source code

```
q31_t foo(__xy q31_t *b, __xy q31_t *c) {
    q31 t s = 0;
```

```
for (i = 0; i < N; i++)
```

```
s += b[i] * c[i]
```

```
return s;
```

XY assembly

```
// prologue, set-up address gen
SR ...
SR ...
LP lpend
MAC 0, %agu_u0, %agu_u1
```

```
lpend: // no epilogue
```

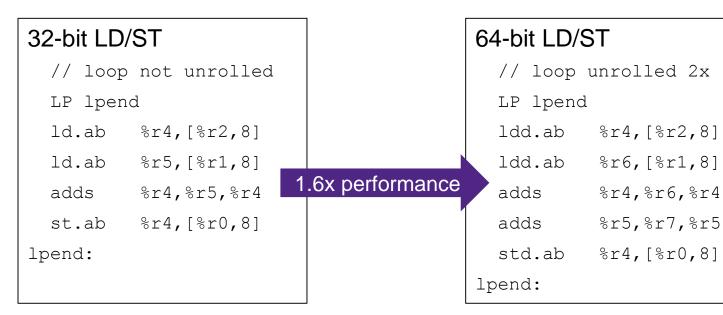
Lower I-memory power

• Smaller code size

	Non-XY	XY	Multi- issue
Performance [MAC/cycle]	0.3	1.0	1.0
I-power [B/MAC]	12	4	8

Multi-issue assembly

...


```
// Prologue SW pipelined
LDD %r2, [%r0, 8] ; 64b vector load
LDD %r4, [%r1, 8] ; 64b vector load
LDD %r6, [%r0, 8] ; 64b vector load
// 4x unrolled loop
LP lpend
{MAC 0, %r2, %r4; LDD %r8, [%r0, 8]} ; 32b MAC and 64b load
{MAC 0, %r3, %r5; LDD %r2, [%r1, 8]} ; 32b MAC and 64b load
{MAC 0, %r6, %r8; LDD %r4, [%r0, 8]} ; 32b MAC and 64b load
{MAC 0, %r7, %r9; LDD %r6, [%r1, 8]} ; 32b MAC and 64b load
{MAC 0, %r7, %r9; LDD %r6, [%r1, 8]} ; 32b MAC and 64b load
{MAC 0, %r7, %r9; LDD %r6, [%r1, 8]} ; 32b MAC and 64b load
{MAC 0, %r7, %r9; LDD %r6, [%r1, 8]} ; 32b MAC and 64b load
```

SYNOPSYS°

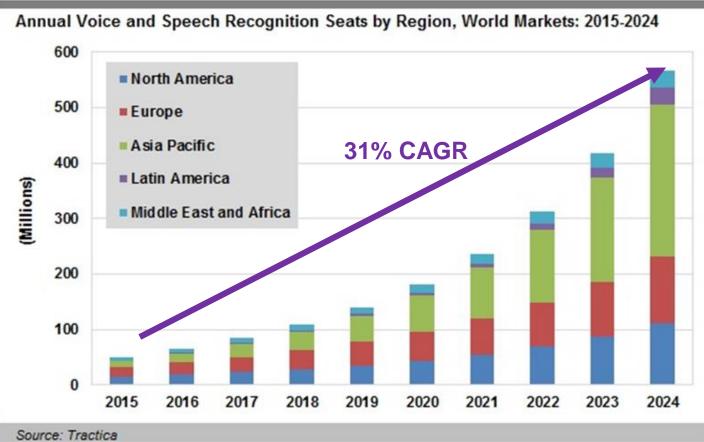
Reducing memory accesses

Wide memories for reducing I&D memory power

- Wide instruction memory
 - Fetch multiple instructions at once \rightarrow no need to fetch instruction every cycle
 - -Widening I-memory by 2x reduces I-memory power by 30-40% for many applications
- Wide data memory
 - -For example, combine 32-bit math with 64-bit LD/ST
 - Compiler performs LD/ST widening

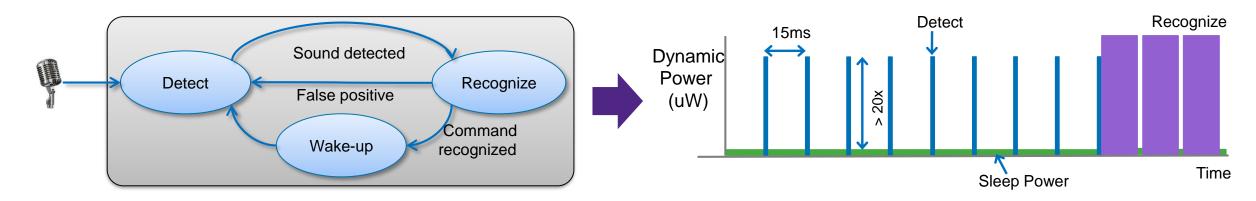
• LD/ST widening

- Loop unrolling
- Vectorization of LD/ST
- To use 64-bit LDD/STD
- Higher performance
 - Reduces cycle count
- Fewer memory accesses
 - Reduces memory power



Market Update

Rapid Adoption of Natural Voice Based Human/Machine Interfaces (HMI)


© 2017 Synopsys, Inc. 13

Voice Activation

Sensory TrulyHandsfree[™] on ARC EM5D

Example of always-on application: always listening

ARC EM5D TSMC 28nm HPM process	Frequency Requirement	Power Consumption
Detection Mode Sensory LPSD function, 16 kHz microphone input	0.26 MHz	0.9 µW*
Recognition Mode 100% (full cycle) recognition, 16 kHz microphone input	7.6 MHz	40 µW*

* Logic dynamic power, gate-level simulation with post-layout RC

Synopsys

sensory

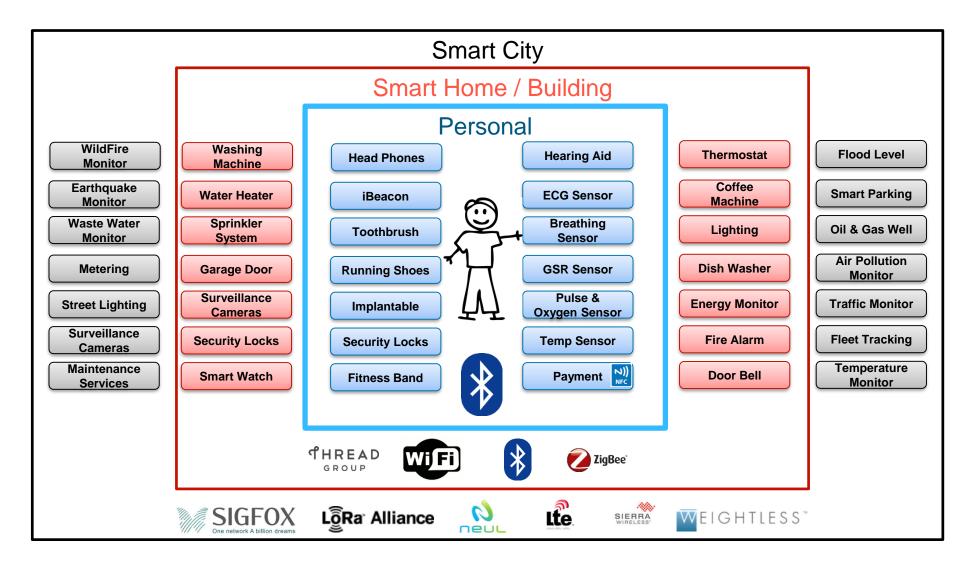
Truly[™] Handsfree[™]

IoT applications

Sensor processing and voice / audio

Wireless connectivity

Security


Conclusion

Communications for the Internet of Things

Many applications and protocols

Wireless Market Trends

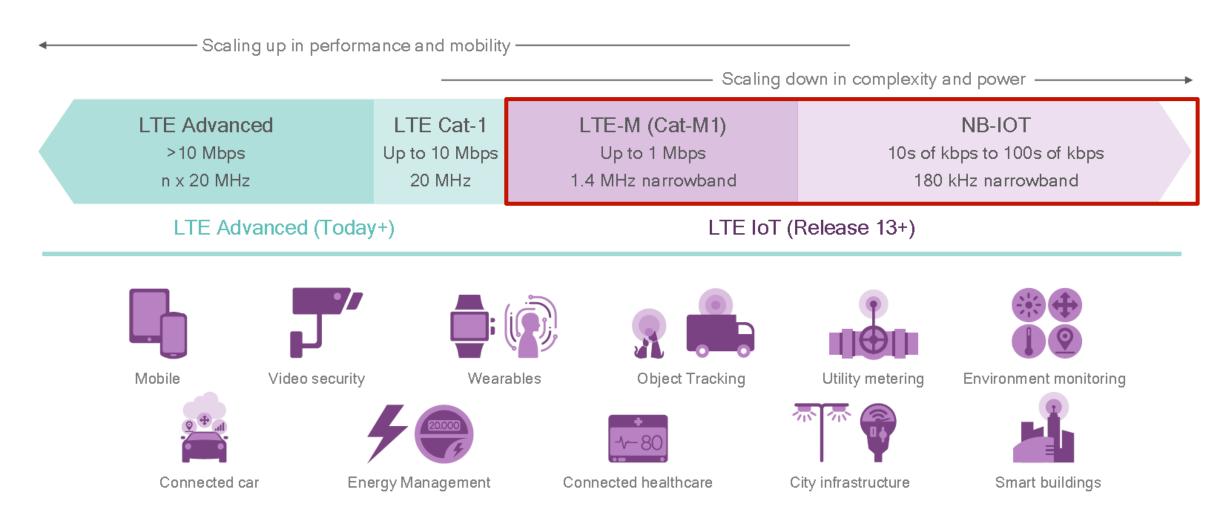
- 5G cellular (ITU IMT-2020)
 - Support >1 Gbps data rates for mobile devices
 - Support large numbers of connected devices
 - Standard to be finalized
 - Huge investment in know-how, hardware (processor + accelerators) and software
- Low Power Wide Area Networks
 - Sigfox: 1st mover, adopted by Samsung, Atmel (ATA8520)
 - LoRa Alliance: Semtech developed radio, supported by 11 cellular providers, Cisco, IBM, Microchip, FSL
 - Weightless: Huawei acquired Neul

LTE-M and NB-IoT

- Low data rate (<1Mbps) / low power / low cost cellular IoT
- Builds on installed cellular network infrastructure
- Supports long-range communication and mobility
- Automotive, utility meters, tele-health, tracking, vending machines, etc.

LoRa Alliance

WEIGHTLESS"

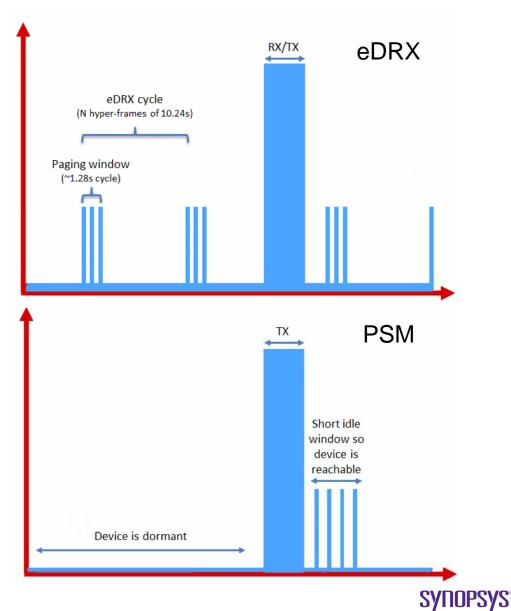


Communications for the Internet of Things

Many applications with broad range of data rates and performance requirements

LTE for IoT

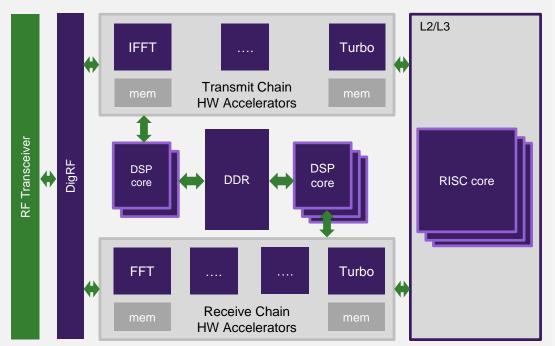
Feature	Cat. 1 (Rel. 8+)	Cat. M1 (Rel. 13)	Cat. NB1 (Rel. 13)	eNB-IOT (Rel. 14)
Bandwidth	20 MHz	1.4 MHz	180 kHz	180 kHz
Deployments	LTE channel	Standalone, in LTE channel	Standalone, in LTE channel, LTE guard bands	Standalone, in LTE channel, LTE guard bands
Full / half duplex	Full duplex (no HD-FDD)	HD-FDD preferred	HD-FDD	HD-FDD preferred
Data rates (peak)	DL: 10 Mbps, UL: 5 Mbps	~800 kbps (FD-FDD) 300/375 kbps DL/UL (HD-FDD)	Less that 100 kbps	Higher than Cat. NB1
Latency	< 1s	~ 5s	<10s	At least the same as Cat. NB1
Coverage	Standard LTE coverage	Improved coverage	Deep coverage to work in cellars	Deep coverage to work in cellars
Mobility	Seamless	Seamless	Connections get dropped on base station switch	More mobility than Cat. NB1
Voice	Yes	Yes	No	No
FEC	Turbo (DL + UL) Viterbi (DL + UL)	Turbo (DL + UL) Viterbi (DL + UL)	Viterbi (DL) Turbo / repetition (UL)	
Encryption	AES-128, SNOW 3G	AES-128, SNOW 3G	AES-128, SNOW 3G	
Power saving	DRX	eDRX, PSM	eDRX, PSM	eDRX, PSM



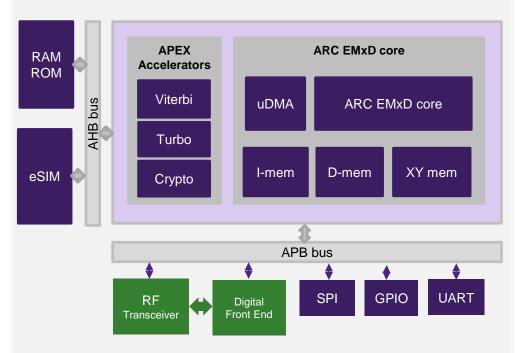
LTE power saving features

- Extended Discontinuous Reception (eDRX)
 - DRX sleep period of up to 10.24s
 - eDRX allows device to sleep for multiple periods of 10.24s
 - Cat.M1: up to ~40 minutes of extended sleep
 - Cat.NB1: up to ~4 hours of extended sleep

- Power Saving Mode (PSM)
 - User Equipment (UE) can decide to go dormant indefinitely
 - When UE decides to wake up it transmits to the network
 - UE remains in RX mode for 4 idle frames to receive a reply



LTE-NB modem architecture


RISC+DSP based SoC with HW accelerators

SoC architecture for wide band cellular modem

ARC EMxD with extensions

SoC architecture for LTE-NB software modem

Hardware Acceleration	Pure Software
Longer development cycle -> slower time to market	Shorter development cycle -> faster time to market
Limited flexibility for changing standards	High flexibility for changing standards
Data transfer overhead, complex synchronization	Simple software synchronization, optimal data exchange
Limited multi standard support	Software standard implementation – can be switched on the fly

Viterbi processor extension

Code example decoder

void viterbi decode(xy int32 vec3x8b sample[], xy int32 result[], int frame) { // sample: array of 3*8b components of input sample // result: decoded result // frame: number of bits in the frame (multiple of 32) // store path metric decision bits xy int32 decisions[frame*2]; // infer XY address generation // path metric reset, single cycle vitrst(); // compute path metrics and decision bits, two cycles per bit for (i = 0; i < frame; i++) {</pre> 721924: decisions[2*i] = vitacc0(sample[i]); decisions[2*i+1] = vitacc1(0); 1 // traceback, one cycle per bit i = 0; j = 0;while (i < frame) {</pre> for (k = 0; k < 31; k++) { vittb(decisions[2*i], decisions[2*i+1]); i++; } result[j++] = vittb(decisions[2*i], decisions[2*i+1]); i++;

721925:	000002a4	382f4840 vitacc0	agu_u0,agu_u1
721926:	000002a8	386f4001 <mark>vitacc1</mark>	agu u0,0
721927:	000002a4	382f4840 vitacc0	agu u0,agu u1
721928:	000002a8	386f4001 <mark>vitacc1</mark>	agu u0,0
			—
•••			
928719:	000002ec	3900483e vittb	0,agu_u1,agu_u0
928720:	000002f0	3900483e vittb	0,agu_u1,agu_u0
928721:	000002f4	3900483e <mark>vittb</mark>	0,agu u1,agu u0
928722:	000002f8	3900483e vittb	0,agu u1,agu u0
928723:	000002fc	3900483e vittb	0,agu u1,agu u0
928724:	00000300	3900483e vittb	0,agu u1,agu u0
928725:	00000304	3900483e vittb	0,agu u1,agu u0
928726:	00000308	39004822 vittb	agu u2, agu u1, agu u0
928727:	000002ec	3900483e vittb	0,agu_u1,agu_u0

000002a8 386f4001|vitacc1 agu u0,0

Viterbi processor extension

MHz requirements for LTE-NB

Viterbi decoding	
Path metrics [cycles/bit]	2
Traceback [cycles/bit]	1
Total [cycles/bit]	3
Overhead for tailbiting [%]	50
Overhead per frame [cycles/frame]	10
Total including overhead [cycles/bit]	~5

Key features Viterbi processor extension

- Supports constraint lengths K in range [5, 12]
- Supports base coding rates $\frac{1}{2}$, $\frac{1}{3}$, $\frac{1}{4}$; other rates supported through (de)puncturing
- Supports tail-biting
- No need to have hardware accelerator on shared interconnect
 - With associated overheads of programming accelerators and moving data to/from accelerators
 - Instead have custom instructions as extensions to EMxD core

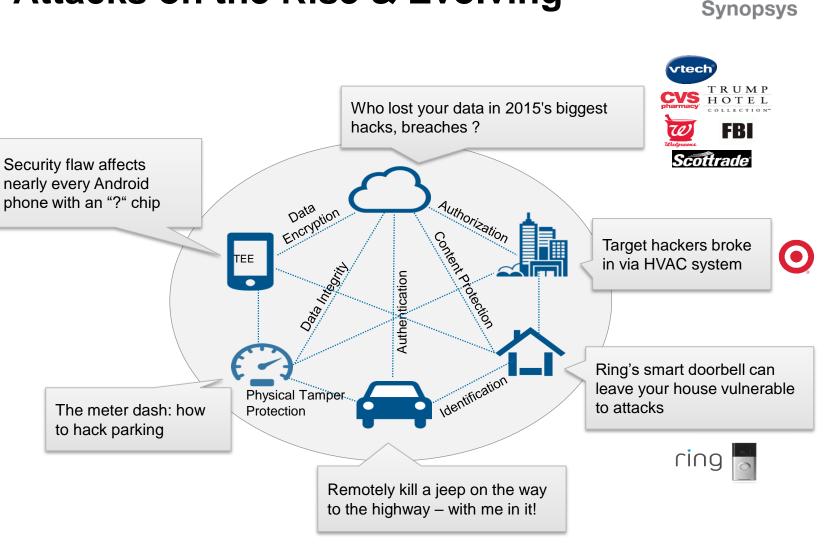
Standard	Peak data rate	MHz requirements ARC EMxD
Cat.NB1	100 kbps	0.5 MHz
Cat.M1	800 kbps	4 MHz

- Low MHz requirements
- Small code size
- Easy software integration
- No need to move data to/from accelerator

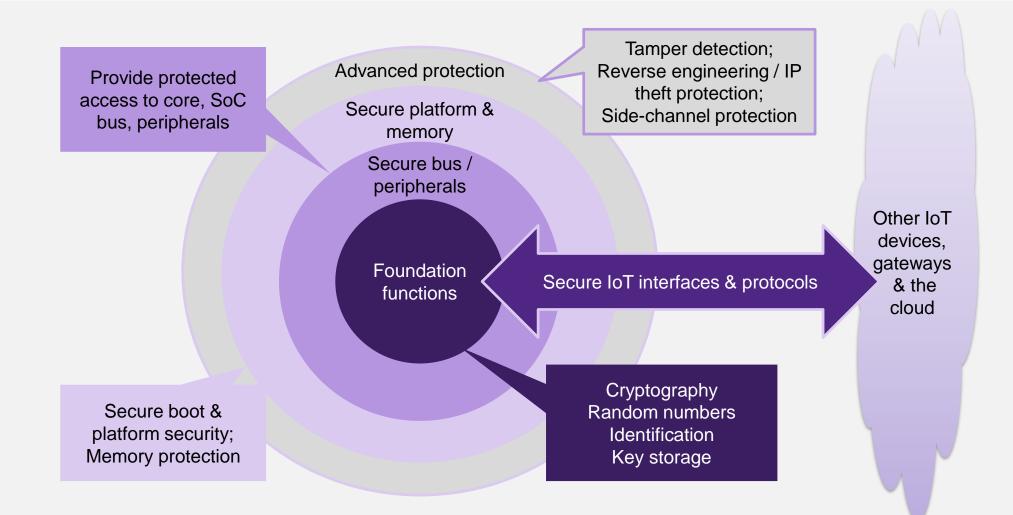
IoT applications

Sensor processing and voice / audio

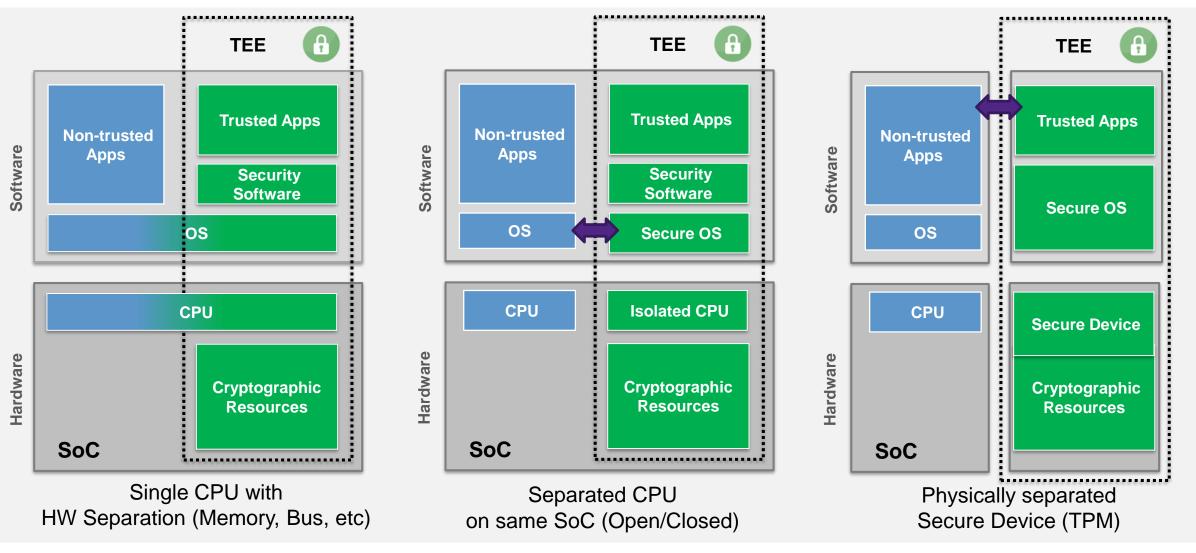
Wireless connectivity


Security

Conclusion


Attacks on the Rise & Evolving

Embedded Security Requirements for Processors



Trusted Execution Environments

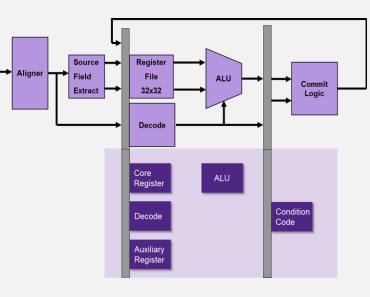
Ensure separation of secure processes. Various implementations.

SYNOPSYS°

Cryptography Implementation Options

Code

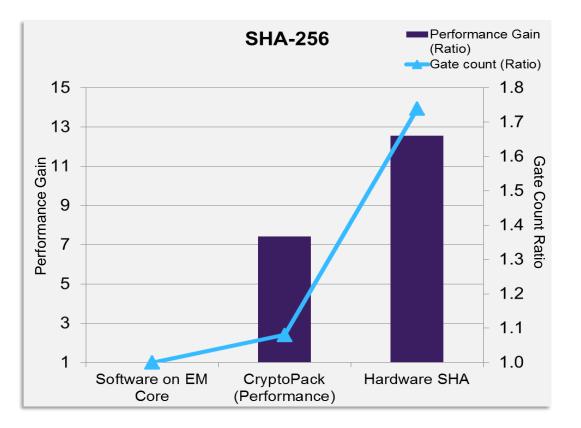
Mem.



Crypto Software

Specialized CPU Instructions

HW Crypto Cores



CryptoPack for ARC EM and SEM Processors

Hardware Extensions to Accelerate Cryptographic Algorithms

- Speeds up software implementations through tested and verified custom instructions
- Also reduces code size
- Area optimized and performance optimized versions
- Support for common crypto algorithms such as AES, 3DES, ECC, SHA-256, and RSA

CryptoPack SHA-256 increases ARC area by 8% but increases performance by 7x and reduces energy by 6.5x

IoT applications

Sensor processing and voice / audio

Wireless connectivity

Security

Conclusion

Conclusions

- Great variety of IoT applications
 - -High growth in many markets
 - -Combine functionalities for sensor processing, connectivity and security
 - Constraints on power and cost will require optimized implementations
- Significant energy savings can be achieved with processors optimized for IoT applications
 - Processors architected for energy efficiency and small code size
 - Memory architecture for reducing accesses to instruction and data memories
 - Configurability for best balance of efficiency and area / power
 - Extensibility for increased cycle efficiency and reduced code size

Thank You

