
RC64 Many-Core DSP
Architecture, System, Software and Algorithms

(Shared Memory Many-core with Hardware Scheduling)

Ran Ginosar
Technion & Ramon Chips

1

MPSoC 2017

Outline

• Motivation: Programming model

• Architecture

• Implementation

• Programming model

• Algorithms

2

many-cores

• Many-core is:
• a single chip

• with many cores (how many?) and on-chip memory (how much?)

• running one (parallel) program at a time, solving one problem

• an accelerator

• Many-core is NOT:
• Not a “normal” multi-core

• Not running an OS

• Contending many-core architectures
• Shared memory (RC64)

• Networked (Tilera, Xeon Phi)

• GPU (Nvidia)

• Contending programming models
• Shared memory

• Message passing

3

One (parallel) program ?

• Best formal approach to parallel programming is

the PRAM model

• Manages

• all cores as a single shared resource

• all memory as a single shared resource

• and more…

4

Joseph F. JaJa,

Introduction to Parallel Algorithms,

1992

Cormen, Leiserson, Rivest, Stein,

Introduction to algorithms,

2009

PRAM matrix-vector multiply

5

× =

The PRAM algorithm

𝑖 is row index

Begin

yi=Aix
End

A,x,y in shared memory

(Concurrent Read of x)

Temporary variables
in private memories

Any core may
execute instance i

Ax=y

Ai x
yi

× =

× =

× =

× =

× =

instance 0

instance 1

instance 2

instance 3

instance 4

Advantages of PRAM-like programming

• Simpler program

• Flat memory model

• Same data structures as in serial code

• No code for finding and moving the data

• Easier programming, lower energy, higher

performance

• Scalable to higher number of cores

6

Advantages of PRAM-like programming
• Same-node Scalability

• Easy to define high levels of parallelism

• Scalable to more cores running slower at lower voltage
• on same technology node

• Example: same-node-scaling from N to 2N cores
same-node-scaling of Vdd and f by 𝛼 = 0.8, … ,0.5

7

N cores,

Vdd, f

2N cores,

𝛼Vdd, 𝛼f
𝛼 = 0.8 𝛼 = 0.7 𝛼 = 0.6 𝛼 = 0.5

Perf 𝑃 𝑁 = 𝑁𝑓
2𝑁𝛼𝑓
= 2𝛼𝑃 𝑁

𝑃(𝑁)
∙ 1.6

𝑃(𝑁)
∙ 1.4

𝑃(𝑁)
∙ 1.2

𝑃(𝑁)

Time 𝑇 𝑁 =
𝑊

𝑁𝑓

𝑊

2𝑁𝛼𝑓
=
𝑇 𝑁

2𝛼

𝑇 𝑁

1.6

𝑇 𝑁

1.4

𝑇 𝑁

1.2
𝑇(𝑁)

Power
𝑃𝑊 𝑁
= 𝑁𝐶𝑉2𝑓

2𝑁𝐶𝛼2𝑉2𝛼𝑓
= 2𝛼3𝑃𝑊 𝑁

𝑃𝑊 𝑁
𝑃𝑊 𝑁
∙ 0.7

𝑃𝑊 𝑁
∙ 0.4

𝑃𝑊 𝑁
∙ 0.25

Energy

𝐸 𝑁
= 𝑃(𝑁)𝑇(𝑁)
= 𝑊𝐶𝑉2

2𝛼3𝑃𝑊 𝑁
∙ 𝑇 𝑁 2𝛼
= 𝛼2𝐸(𝑁)

𝐸(𝑁)
∙ 0.64

𝐸(𝑁)
∙ 0.5

𝐸(𝑁)
∙ 0.36

𝐸(𝑁)
∙ 0.25

Perf

/ Pwr

𝑃𝑃𝑅 𝑁
= 1 𝐶𝑉2

𝑃𝑃𝑅(𝑁)

𝛼2
𝑃𝑃𝑅(𝑁)
∙ 1.5

𝑃𝑃𝑅(𝑁)
∙ 2

𝑃𝑃𝑅(𝑁)
∙ 2.8

𝑃𝑃𝑅(𝑁)
∙ 4

Outline

• Motivation: Programming model

• Architecture

• Implementation

• Programming model

• Algorithms

8

9

RC64 conceptual architecture: part I

“Anti-local” address interleaving

Negligible conflicts

Many small processor cores

Small local memories (scratchpad, L1 caches)
PPPPPPPP

Off-chip memory, IO

Shared Memory

P-to-M resolving NoC
Fast NOC to memory

(Multistage Interconnection Network)

NOC resolves conflicts

SHARED memory, many banks

~Equi-distant from cores (a few cycles)

PPPPPPPP

P-to-M resolving NoC

Low (zero) latency parallel scheduling

enables fine granularity

scheduler

P-to-S

scheduling NoC

RC64 conceptual architecture: part II

Hardware scheduler / dispatcher / synchronizer

Shared Memory
“Anti-local” address interleaving

Negligible conflicts

Many small processor cores

Small local memories (scratchpad, L1 caches)

Fast NOC to memory

(Multistage Interconnection Network)

NOC resolves conflicts

SHARED memory, many banks

~Equi-distant from cores (a few cycles)

10

external memory, IO

Outline

• Motivation: Programming model

• Architecture

• Implementation

• Programming model

• Algorithms

11

RC64
• 64 DSP cores

• CEVA X1643

• 300 MHz, 38 GFLOPS,
150 GOPS, 20 GIPS

• SPM, I$, D$

• HW scheduler

• Modem HW accelerators

• 4 Mbyte shared memory

• Fast I/O

• Rad-Hard, FDIR

• 65nm LP TSMC

• Scalable up to 10 Watt

• PBGA & CCGA 624 (729)

• Designed for
SOFTWARE-DEFINED-
SATELLITES

Shared Memory

M M M M M M M M

SpFi/sRIO DDR2/3 AD/DA SpW NVM

DMA

scheduler
FEC

D
SP

$

D
SP

$

D
SP

$

D
SP

$
D

SP
$

D
SP

$

D
SP

$

D
SP

$

M M M M M M M M

M M M M M M M M

12

Logarithmic multistage interconnection network

P

P

P

P

P

P

P

P

P

P

P

P

M

M

M

M

M

M

M

M

M

M

M

M

Pipeline stage (registers)Combinational switches
13

64

cores

plus

30

DMA

controllers

256

memory

banks

RC64 Floor plan: 64 DSP cores (24KB each)

& 4MB shared memory take 352 mm2 on 65nmLP

A
D

C
/D

A
C

 I
n

te
rf

a
c
e

SHARED

MEMORY

64 DSP CORES

22 mm

1
6
.1

 m
m

SpW/FLASH/GPIO Interface

DDR2/3 Interface

A
D

C
/D

A
C

 I
n

te
rf

a
c
e

SpFi

14

RC64 vs other space processors

15

RC64 vs other space processors

16

8 ARM

49 MIPS

2 X86

Many-RC64 system: comp/stor/comm satellite

RF ADC

ANT

RF ADC

ANT

OPTIC ADC

RF ADC

ANT

RF ADC

ANT

RF ADC

ANT

RF-ISL

RF-GND

DBF

DBF

DEMUX

DEMUX

DEMUX

DEMUX

DEMUX

DEMUX

DEMUX

DEMUX

DEMUX

DEMDEC

DEMDEC

DEMDEC

DEMDEC

DEMDEC

DEMDEC

DEMDEC

DEMDEC

DEMDEC

SWITCH

ROUTER

SDN

CYBER-SEC

MODCOD

MODCOD

MODCOD

MODCOD

MODCOD

MODCOD

MODCOD

MODCOD

MODCOD

MUX

MUX

MUX

MUX

MUX

MUX

MUX

MUX

MUX

DBF

DBF

DAC

DAC

DAC

DAC

DAC

RF

ANT

RF

ANT

RF

ANT

RF

ANT

RF

ANT

Radio Processing

Payload Control

OPTIC ADC

OPTIC ADC

OPTIC ADC

OPTIC ADC

OPT-ISL

DEMUX DEMDEC

DEMUX DEMDEC

DEMUX DEMDEC

DEMUX DEMDEC

DEMUX DEMDEC CLOUD STORAGE

&

PROCESSING

RF-ISL

MODCOD

MODCOD

MODCOD

MODCOD

MODCOD

MUX

MUX

MUX

MUX

MUX

DAC OPTIC

OPTIC

OPTIC

OPTIC

OPTIC

DAC

DAC

DAC

DAC

OPT-ISL

RF-GND

17

Many-RC64 system: comp/stor/comm satellite

RF-GND

OPT-ISL

RC64 RC64 RC64 RC64 RC64 RC64 RC64 RC64 RC64 RC64

RC64 RC64 RC64 RC64 RC64 RC64 RC64 RC64 RC64 RC64

RC64 RC64 RC64 RC64 RC64 RC64 RC64 RC64 RC64 RC64

RC64 RC64 RC64 RC64 RC64 RC64 RC64 RC64 RC64 RC64

RC64 RC64 RC64 RC64 RC64 RC64 RC64 RC64 RC64 RC64

RC64 RC64 RC64 RC64 RC64 RC64 RC64 RC64 RC64 RC64

RC64 RC64 RC64 RC64 RC64 RC64 RC64 RC64 RC64 RC64

RC64 RC64 RC64 RC64 RC64 RC64 RC64 RC64 RC64 RC64

S
S

D

S
S

D

S
S

D

S
S

D

S
S

D

S
S

D

S
S

D

S
S

D

S
S

D

S
S

D

RF ADC

ANT

RF ADC

ANT

RF ADC

ANT

RF ADC

ANT

RF ADC

ANT

RF-ISL

DAC

DAC

DAC

DAC

DAC

RF

ANT

RF

ANT

RF

ANT

RF

ANT

RF

ANT

RF-ISL

OPT-ISL

RF-GND

OPTIC ADC

OPTIC ADC

OPTIC ADC

OPTIC ADC

OPTIC ADC

DAC OPTIC

OPTIC

OPTIC

OPTIC

OPTIC

DAC

DAC

DAC

DAC

18

Many-RC64 system: comp/stor/comm satellite

RF ADC

ANT

RF ADC

ANT

RF ADC

ANT

RF ADC

ANT

RF ADC

ANT

RF-ISL

RF-GND

DAC

DAC

DAC

DAC

DAC

RF

ANT

RF

ANT

RF

ANT

RF

ANT

RF

ANT

OPT-ISL

RF-ISL

OPT-ISL

RF-GND

RC64 RC64 RC64 RC64 RC64 RC64 RC64 RC64 RC64 RC64

RC64 RC64 RC64 RC64 RC64 RC64 RC64 RC64 RC64 RC64

RC64 RC64 RC64 RC64 RC64 RC64 RC64 RC64 RC64 RC64

RC64 RC64 RC64 RC64 RC64 RC64 RC64 RC64 RC64 RC64

RC64 RC64 RC64 RC64 RC64 RC64 RC64 RC64 RC64 RC64

RC64 RC64 RC64 RC64 RC64 RC64 RC64 RC64 RC64 RC64

RC64 RC64 RC64 RC64 RC64 RC64 RC64 RC64 RC64 RC64

RC64 RC64 RC64 RC64 RC64 RC64 RC64 RC64 RC64 RC64

S
S

D

S
S

D

S
S

D

S
S

D

S
S

D

S
S

D

S
S

D

S
S

D

S
S

D

S
S

D

Inter-Satellite

Link

Receivers

GND Link

Receivers

Inter-

Satellite

Link
Transmitters

GND Link

Transmitters

CLOUD STORAGE & PROCESSING

Packet

Router

Cyber

Security

Radio Management & Payload Control

OPTIC ADC

OPTIC ADC

OPTIC ADC

OPTIC ADC

OPTIC ADC

DAC OPTIC

OPTIC

OPTIC

OPTIC

OPTIC

DAC

DAC

DAC

DAC

19

RC64 SW Development Tools

Optimization &

performance

tuning

RC64

HW Interface
Many Core DebuggerHW Interface

Parallel

Program

Profiler

Event

Recorder

(time stamp

tracer)

Parallel DSP

Kernels &

Libraries

BW

Allocator

Compiler, ASM, Linker
Compiler

tool chain Core DSP Libraries

Parallel Program

Simulator

Parallel

Programming
Task Compiler

Shared Memory

Verifier

20

RC64 Run Time Model

Hardware (RC64 and Peripherals)

RC64 HW DMA Engines RC64 HW Scheduler

IO API Task API
Boot

Application

Tasks
Network

Messaging

Host

Command

Control

Message

Routing

Error

Correcting

DDR and Flash

MP

(Multi-

RC64)

HW

Kernel

System

Services

Distributed Executive

Boot

and

FDIR

21

Outline

• Motivation: Programming model

• Architecture

• Implementation

• Programming model

• Algorithms

22

Three levels of “parallel” programming

23

• Multiple RC64 chips
• Distributed computing

(message passing)

• OR: shared memory

• One RC64 chip
• 64 cores, shared memory

• A high performance core
• VLIW + SIMD

• NO VECTORIZATION

PPPPPPPP

P-to-M resolving NoC

scheduler

P-to-S

scheduling NoC

Shared memory

24

RC64 task-oriented programming model

• Programmer generates TWO parts:

• Task-dependency-graph

• Sequential task codes

• Task graph loaded into scheduler

• Tasks loaded into memory

regular

duplicable taskName (instance_id)

{

… instance_id ….

// instance_id is instance number

…..

}

Task template: PPPPPPPP

P-to-M resolving NoC

scheduler

P-to-S

scheduling NoC

Shared memory

Fine Grain Parallelization

Convert (independent) loop iterations

(potential data parallelism)
for (i=0; i<10000; i++) { a[i] = b[i]*c[i]; }

into parallel tasks
set_task_quota(doLargeLoop, 10000)

void doLargeLoop(unsigned int id)

{ a[id] = b[id]*c[id]; } //id is instance number

(data parallelism  explicit task parallelism)

25

duplicable doLargeLoop

26

Task graph example (2D FFT)

Duplicable task …
…
…

…
…
…

Condition

Join / fork

Singular task

27

Another task graph (linear solver)

28

Linear Solver: Simulation snap-shots

Finished
All

Allocated
ReadyPending

Next version

Cores and Tasks

29

BusyIdleCore

Task

Hardware Scheduler: Under the hood

30

task # Instance # …0

1

2

core #

…

total instances # already allocated …0

1

2

task #

…

statedependencies

state

task graph

RC64 Task Rules

• Tasks are sequential

• All ready tasks, or any subset, can be executed in parallel on
any number of cores

• All computing organized in tasks. All code lines belong to
tasks

• Tasks use shared data in shared memory
• May employ local private memory, BUT its contents disappear after

task completion

• Nesting task spawning is easy and natural

• Conditions on tasks checked by scheduler

• Tasks are not functions
• No arguments, no inputs, no outputs

• No synchronization points other than task completion
• No locks, no BSP, no barriers

• Sharing data is correct-by-construction

31

Concurrency in RC64

• Non-preemptive execution

• Task graph defines tasks and dependencies

• Task graph is executed by the scheduler

•  path ti  tk  ti, tk are non-concurrent

• Execution of ti must complete before start of

execution of tk

• Otherwise, ti, tk are concurrent

• May execute simultaneously

or at any order

• Task graph is decomposable into

concurrent sets

32

ti

tk

tkti

(verifiable) Shared Memory Access Rules

1. Predictable Addressing
• Shared memory addresses should be known at

compile time
• No data-dependent shared memory addresses

• Predictable malloc() address

2. Exclusive Write (EW)
• IF task ti writes into A, the compiler can verify that

no concurrent task tk is allowed to access A
(neither read nor write)

3. Concurrent Read (CR)
• The compiler can verify that

concurrent tasks may read from same address
but none of them may write into it

33

Outline

• Motivation: Programming model

• Architecture

• Implementation

• Programming model

• Algorithms

34

Matrix Multiplication on RC64

• Each result element 𝐶𝑖,𝑗 is computed by a task

• For N×N matrices, N×N tasks (regardless of #cores)

• Later, each task computes an entire row of 𝐶

• Only N tasks

35

𝐶 = 𝐴 × 𝐵

𝐶𝑖,𝑗 =

𝑚

𝐴𝑖,𝑚 × 𝐵𝑚,𝑗

Matrix Multiplication on RC64

36

#define MSIZE 100

float A[MSIZE][MSIZE], B[MSIZE][MSIZE],

C[MSIZE][MSIZE];

int mm_start() REGULAR
{ int i,j;

for (i=0; i< MSIZE; i++)

for (j=0; j< MSIZE; j++)

{ A[i][j] = 13; B[i][j] = 9; }

}

void mm (unsigned int id) DUPLICABLE
{ int i,j,m; float sum = 0;

i = id % MSIZE; j = id / MSIZE;

for (m=0; m < MSIZE; m++)

sum += A[i][m]*B[m][j];

C[i][j]=sum;

}

int mm_end () REGULAR
{ printf("finished mm\n"); }

#define MSIZE 100

#define MMSIZE 10000

regular mm_start()

duplicable mm(mm_start) MMSIZE

regular mm_end(mm)

CODE (plain C) TASK GRAPH

duplicable mm

regular mm_start

regular mm_end

Matrix Multiplication on RC64

• Why is SU(1024) still less than 1024?

37

P Tp SU Eff

1 8,190,021 1 1.00

2 4,095,021 2 1.00

4 2,047,521 4 1.00

8 1,023,771 8 1.00

16 511,896 16 1.00

32 256,368 32 1.00

64 128,604 64 1.00

128 64,722 127 0.99

256 32,781 250 0.98

512 16,401 499 0.98

1024 8,211 997 0.97

SPEEDUP & THRUPUT

Matrix Multiplication using only N tasks

38

#define MSIZE 100

float A[MSIZE][MSIZE], B[MSIZE][MSIZE],

C[MSIZE][MSIZE];

int mm_start () REGULAR

{ int i,j;

for (i=0; i< MSIZE; i++)

for (j=0; j< MSIZE; j++)

{ A[i][j] = 13; B[i][j] = 9; }

}

void mm_ntasks (unsigned int id) DUP

{ int m, k; float sum = 0;

for (k=0; k<MSIZE; k++) {

sum = 0;

for (m=0; m < MSIZE; m++)

sum += A[id][m]*B[m][k];

C[id][k]=sum;

}

}

int mm_end () REGULAR

{ printf("finished mm with N tasks\n"); }

#define MSIZE 100

regular mm_start()

duplicable mm_ntasks(mm_start) MSIZE

regular mm_end(mm_ntasks)

CODE (plain C) TASK GRAPH

duplicable mm_ntasks

regular mm_start

regular mm_end

Matrix Multiplication using only N tasks

• What went wrong ?

39

P Tp SU Eff

1 8,140,021 1 1.00

2 4,070,021 2 1.00

4 2,035,021 4 1.00

8 1,058,221 8 0.96

16 569,821 14 0.89

32 325,621 25 0.78

64 162,821 50 0.78

128 81,421 100 0.78

256 81,421 100 0.39

512 81,421 100 0.20

1024 81,421 100 0.10

SPEEDUP & THRUPUT

EFFICIENCY

SW development flow: MATLAB to RC64

1. MATLAB float, unrestricted (also SIMULINK)

2. MATLAB float, restricted memory size and I/O

3. MATLAB fixed point 16-bit
• Insert DSP library functions

• Create Golden model

4. Convert to C
• Sequential code on laptop

• Bit-exact comparison to Golden model

5. Parallelize for RC64 many-core. Create task graph
• Simulate using “many-task emulator” on laptop

• Bit-exact comparison to Golden model

6. Transfer to RC64
• Execute on hardware, or

• Simulate using cycle-accurate RC64 simulator

• Bit-exact comparison to Golden model

40

41

Advantages of RC64 architecture

• Shared, uniform (~equi-distant) memory
• no worry which core does what

• no advantage to any core because it already holds the data

• Many-bank memory + fast P-to-M NoC
• low latency

• no bottleneck accessing shared memory

• Fast scheduling of tasks to free cores (many at once)
• enables fine grain data parallelism

• Any core can do any task equally well on short notice
• scales well

• Programming model:
• Intuitive to programmers

• CREW verifiable

• Simple model facilitates parallelizing compiler

Summary

• Simple manycore architecture
• Inspired by PRAM

• Hardware scheduling

• Task-based programming model
• Fine grain tasks

• #instances >> #cores

• Many-Flow

• Designed to achieve the goal of
‘more cores, less power’

• RC64 implementation

• Potentially scalable efficiently to 256, 1024 cores

42

