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many-cores

• Many-core is:
• a single chip

• with many cores (how many?) and on-chip memory (how much?)

• running one (parallel) program at a time, solving one problem

• an accelerator

• Many-core is NOT:
• Not a “normal” multi-core

• Not running an OS

• Contending many-core architectures
• Shared memory (RC64)

• Networked (Tilera, Xeon Phi)

• GPU (Nvidia)

• Contending programming models
• Shared memory

• Message passing
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One (parallel) program ?

• Best formal approach to parallel programming is 

the PRAM model

• Manages

• all cores as a single shared resource

• all memory as a single shared resource

• and more…
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Joseph F. JaJa, 
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PRAM matrix-vector multiply
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× =

The PRAM algorithm

𝑖 is row index

Begin

yi=Aix
End

A,x,y in shared memory

(Concurrent Read of x)

Temporary variables 
in private memories

Any core may
execute instance i

Ax=y

Ai x
yi
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Advantages of PRAM-like programming

• Simpler program

• Flat memory model

• Same data structures as in serial code

• No code for finding and moving the data

• Easier programming, lower energy, higher 

performance

• Scalable to higher number of cores
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Advantages of PRAM-like programming
• Same-node Scalability

• Easy to define high levels of parallelism

• Scalable to more cores running slower at lower voltage
• on same technology node

• Example: same-node-scaling from N to 2N cores
same-node-scaling of Vdd and f by 𝛼 = 0.8, … ,0.5
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RC64 conceptual architecture: part I

“Anti-local” address interleaving

Negligible conflicts

Many small processor cores

Small local memories (scratchpad, L1 caches)
PPPPPPPP

Off-chip memory, IO

Shared Memory

P-to-M resolving NoC
Fast NOC to memory

(Multistage Interconnection Network) 

NOC resolves conflicts

SHARED memory, many banks

~Equi-distant from cores (a few cycles)



PPPPPPPP

P-to-M resolving NoC

Low (zero) latency parallel scheduling

enables fine granularity

scheduler

P-to-S 

scheduling NoC

RC64 conceptual architecture: part II

Hardware scheduler / dispatcher / synchronizer

Shared Memory
“Anti-local” address interleaving

Negligible conflicts

Many small processor cores

Small local memories (scratchpad, L1 caches)

Fast NOC to memory

(Multistage Interconnection Network) 

NOC resolves conflicts

SHARED memory, many banks

~Equi-distant from cores (a few cycles)
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RC64
• 64 DSP cores

• CEVA X1643

• 300 MHz, 38 GFLOPS, 
150 GOPS, 20 GIPS

• SPM, I$, D$

• HW scheduler

• Modem HW accelerators

• 4 Mbyte shared memory

• Fast I/O

• Rad-Hard, FDIR

• 65nm LP TSMC

• Scalable up to 10 Watt

• PBGA & CCGA 624 (729)

• Designed for
SOFTWARE-DEFINED-
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Shared Memory
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Logarithmic multistage interconnection network
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RC64 Floor plan: 64 DSP cores (24KB each) 

& 4MB shared memory take 352 mm2 on 65nmLP
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RC64 vs other space processors
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RC64 vs other space processors
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Many-RC64 system: comp/stor/comm satellite
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Many-RC64 system: comp/stor/comm satellite
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Many-RC64 system: comp/stor/comm satellite
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RC64 SW Development Tools

Optimization & 

performance 

tuning

RC64 

HW Interface
Many Core DebuggerHW Interface

Parallel 

Program 

Profiler

Event 

Recorder

(time stamp 

tracer)

Parallel DSP 

Kernels & 

Libraries

BW 

Allocator

Compiler, ASM, Linker
Compiler 

tool chain Core DSP Libraries

Parallel Program 

Simulator

Parallel 

Programming
Task Compiler

Shared Memory 

Verifier
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RC64 Run Time Model

Hardware (RC64 and Peripherals)

RC64 HW DMA Engines RC64 HW Scheduler

IO API Task  API
Boot

Application 

Tasks
Network 

Messaging

Host 

Command 

Control

Message 

Routing

Error 

Correcting 

DDR and Flash

MP

(Multi-
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HW

Kernel

System

Services

Distributed Executive

Boot 

and 

FDIR
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Three levels of “parallel” programming
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• Multiple RC64 chips
• Distributed computing

(message passing)

• OR: shared memory 

• One RC64 chip
• 64 cores, shared memory

• A high performance core
• VLIW + SIMD

• NO VECTORIZATION

PPPPPPPP

P-to-M resolving NoC

scheduler

P-to-S 

scheduling NoC

Shared memory
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RC64 task-oriented programming model

• Programmer generates TWO parts:

• Task-dependency-graph 

• Sequential task codes

• Task graph loaded into scheduler

• Tasks loaded into memory

regular

duplicable   taskName ( instance_id )

{

… instance_id ….  

// instance_id is instance number

…..

}

Task template: PPPPPPPP

P-to-M resolving NoC

scheduler

P-to-S 

scheduling NoC

Shared memory



Fine Grain Parallelization

Convert (independent) loop iterations

(potential data parallelism)
for ( i=0; i<10000; i++ ) { a[i] = b[i]*c[i]; }

into parallel tasks
set_task_quota(doLargeLoop, 10000)

void doLargeLoop(unsigned int id)

{ a[id] = b[id]*c[id]; }  //id is instance number 

(data parallelism  explicit task parallelism)

25

duplicable doLargeLoop
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Task graph example (2D FFT)

Duplicable task …
…
…

…
…
…

Condition

Join / fork

Singular task



27

Another task graph (linear solver)
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Linear Solver: Simulation snap-shots



Finished
All

Allocated
ReadyPending

Next version

Cores and Tasks
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BusyIdleCore

Task



Hardware Scheduler: Under the hood
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task # Instance # …0

1

2

core #

…

total instances # already allocated …0

1

2

task #

…

statedependencies

state

task graph



RC64 Task Rules

• Tasks are sequential

• All ready tasks, or any subset, can be executed in parallel on 
any number of cores

• All computing organized in tasks. All code lines belong to 
tasks

• Tasks use shared data in shared memory
• May employ local private memory, BUT its contents disappear after 

task completion

• Nesting task spawning is easy and natural

• Conditions on tasks checked by scheduler

• Tasks are not functions
• No arguments, no inputs, no outputs

• No synchronization points other than task completion
• No locks, no BSP, no barriers

• Sharing data is correct-by-construction
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Concurrency in RC64

• Non-preemptive execution

• Task graph defines tasks and dependencies 

• Task graph is executed by the scheduler

•  path ti  tk  ti, tk are non-concurrent 

• Execution of ti must complete before start of 

execution of tk

• Otherwise, ti, tk are concurrent 

• May execute simultaneously 

or at any order

• Task graph is decomposable into 

concurrent sets

32
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(verifiable) Shared Memory Access Rules

1. Predictable Addressing
• Shared memory addresses should be known at 

compile time
• No data-dependent shared memory addresses

• Predictable malloc() address

2. Exclusive Write (EW)
• IF task ti writes into A, the compiler can verify that 

no concurrent task tk is allowed to access A
(neither read nor write)

3. Concurrent Read (CR)
• The compiler can verify that

concurrent tasks may read from same address 
but none of them may write into it
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Matrix Multiplication on RC64

• Each result element 𝐶𝑖,𝑗 is computed by a task

• For N×N matrices, N×N tasks (regardless of #cores)

• Later, each task computes an entire row of 𝐶

• Only N tasks

35

𝐶 = 𝐴 × 𝐵

𝐶𝑖,𝑗 = 

𝑚

𝐴𝑖,𝑚 × 𝐵𝑚,𝑗



Matrix Multiplication on RC64
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#define MSIZE 100

float A[MSIZE][MSIZE],      B[MSIZE][MSIZE],

C[MSIZE][MSIZE];

int mm_start()                                 REGULAR
{    int i,j;  

for (i=0; i< MSIZE; i++) 

for (j=0; j< MSIZE; j++)

{ A[i][j] = 13; B[i][j] = 9; }

}

void mm (unsigned int id)         DUPLICABLE
{    int i,j,m;  float sum = 0;  

i = id % MSIZE;      j = id / MSIZE;

for (m=0; m < MSIZE; m++)  

sum += A[i][m]*B[m][j];

C[i][j]=sum;

}

int mm_end () REGULAR
{  printf("finished mm\n");  }

#define MSIZE 100

#define MMSIZE 10000

regular mm_start()

duplicable  mm(mm_start) MMSIZE

regular      mm_end(mm)

CODE (plain C) TASK GRAPH

duplicable mm

regular mm_start

regular mm_end



Matrix Multiplication on RC64

• Why is SU(1024) still less than 1024?
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P Tp SU Eff

1 8,190,021   1 1.00

2 4,095,021   2 1.00

4 2,047,521   4 1.00

8 1,023,771   8 1.00

16 511,896       16 1.00

32 256,368       32 1.00

64 128,604       64 1.00

128 64,722         127 0.99

256 32,781         250 0.98

512 16,401         499 0.98

1024 8,211           997 0.97

SPEEDUP & THRUPUT



Matrix Multiplication using only N tasks
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#define MSIZE 100

float A[MSIZE][MSIZE],   B[MSIZE][MSIZE],

C[MSIZE][MSIZE];

int mm_start ()                         REGULAR

{    int i,j;  

for (i=0; i< MSIZE; i++) 

for (j=0; j< MSIZE; j++)

{ A[i][j] = 13;  B[i][j] = 9;   }

}

void mm_ntasks (unsigned int id)            DUP

{    int m, k; float sum = 0; 

for (k=0; k<MSIZE; k++) {

sum = 0;

for (m=0; m < MSIZE; m++) 

sum += A[id][m]*B[m][k];

C[id][k]=sum;

}

}

int mm_end () REGULAR

{    printf("finished mm with N tasks\n");  }

#define MSIZE 100

regular mm_start()

duplicable  mm_ntasks(mm_start) MSIZE

regular  mm_end(mm_ntasks)

CODE (plain C) TASK GRAPH

duplicable mm_ntasks

regular mm_start

regular mm_end



Matrix Multiplication using only N tasks

• What went wrong ?
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P Tp SU Eff

1 8,140,021   1 1.00

2 4,070,021   2 1.00

4 2,035,021   4 1.00

8 1,058,221   8 0.96

16 569,821       14 0.89

32 325,621       25 0.78

64 162,821       50 0.78

128 81,421         100 0.78

256 81,421         100 0.39

512 81,421         100 0.20

1024 81,421         100 0.10

SPEEDUP & THRUPUT

EFFICIENCY



SW development flow: MATLAB to RC64

1. MATLAB float, unrestricted     (also SIMULINK)

2. MATLAB float, restricted memory size and I/O

3. MATLAB fixed point 16-bit
• Insert DSP library functions

• Create Golden model

4. Convert to C
• Sequential code on laptop

• Bit-exact comparison to Golden model

5. Parallelize for RC64 many-core. Create task graph
• Simulate using “many-task emulator” on laptop

• Bit-exact comparison to Golden model

6. Transfer to RC64
• Execute on hardware, or

• Simulate using cycle-accurate RC64 simulator

• Bit-exact comparison to Golden model
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Advantages of RC64 architecture

• Shared, uniform (~equi-distant) memory
• no worry which core does what

• no advantage to any core because it already holds the data

• Many-bank memory + fast P-to-M NoC
• low latency

• no bottleneck accessing shared memory 

• Fast scheduling of tasks to free cores (many at once)
• enables fine grain data parallelism

• Any core can do any task equally well on short notice 
• scales well

• Programming model: 
• Intuitive to programmers 

• CREW verifiable

• Simple model facilitates parallelizing compiler



Summary

• Simple manycore architecture
• Inspired by PRAM

• Hardware scheduling 

• Task-based programming model 
• Fine grain tasks

• #instances >> #cores

• Many-Flow

• Designed to achieve the goal of 
‘more cores, less power’

• RC64 implementation

• Potentially scalable efficiently to 256, 1024 cores
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