MPSoC 2017

Machine learning Based Intelligent Interconnect for Next Generation Autonomous Vehicle SoCs

Rocco Jonack

Challenges Facing Autonomous Vehicles

Translating System-Level Requirements → SoC Level

Exploding Performance Requirements

- Rise of heterogeneous architectures & right-sized compute
- Cache coherency & End-to-end QoS of critical importance

Real-Time Sensor Processing

- Different IPs with differing requirements
- ▲ Ensuring communication happens without any deadlocks

Ultra-High Safety & Reliability

- → Pressure to comply to industry standards ISO 26262
- **▲** Functional Safety Performance Area Tradeoffs

Autonomous Driving: Use Case Compute Flow

Noise removal **Image** Pixel processing Acquisition Image pyramids Optical flow Feature **Edge detection** Extraction **Gradient detection** Segmentation & filtering **Feature** Object tracking **Processing Object detection** Feature reduction Pattern Feature classification Recognition Augmentation Computation & processing Feedback and Feedback loop Action Avoidance signalling

Need For Heterogeneous Computing

Challenges With Heterogeneous Computing

Cache Coherency Ensure every compute engine has uniform view of system memory

System-Level QoS BW-Hogs, Latency-sensitive & Real-time engines need seamless access to memory

End-to-End Functional Safety

Underlying architecture should be resilient & tolerant to random & systematic errors

- Smaller amounts of dataHighly structured data
- Complex computation/item

- Lots of data
- Simple computation/item
- Massive parallelism

Next-Gen Autonomous SoC Architecture Details

- Single & multi-threaded compute engines
- Differing access patterns, spatial/temporal locality and performance requirements

SEAMLESS CACHE COHERENCY

- Uniform shared view of system memory
- Interprocessor communications lead to network and protocol level deadlocks

- Dynamically changing workloads
- Handle changing use cases/SW needs
- Highest level of fault tolerance

Existing Approaches Fall Short

Hard, Fixed Point Designs

- Fixed topology with limited configurability
- Coherency through "tiled" structures and regular connection patterns

Manual, Hand-optimized

- Hand-optimized sub systems
- Divide and conquer approach: Separate coherent, non-coherent
- ▲ Deadlock prone designs

Key Elements Are Afterthoughts

- QoS schemes are patched, built on top of existing infrastructure
- ✓ Functional safety features is "added-on" instead of being architected in the solution

NetSpeed Technology: Intelligent Interconnect Architecture

Machine Learning Based Interconnect Construction

Scalable Cache Coherent Interconnect

Configurable Cache Coherency

- ▲ Scalable coherency solution: Modular & programmable
- ▲ In-built directory support
- ▲ Specialized IO-Coherency accelerator

Multi-Level Caching Options

- ▲ Programmable allocation policies

Scalable Solution

- ▲ 64 cache coherent cluster; 250 IO coherent IPs
- ▲ Seamless connection with DDR, HBM memories
- ▲ In-built deadlock detection and avoidance

NetSpeed Gemini Components

Scalable Cache Coherent Interconnect: Built-In Deadlock Avoidance

Built-In Deadlock Detection & Avoidance

- ▲ Formal methods and graph theory algorithms
- User-driven traffic dependencies
- ▲ Handles complex topologies and routing

NetSpeed Gemini Components

Advanced SoC-Level QoS Schemes

Dynamic QoS Control

- ▲ 16 Traffic Classes & 64 Virtual Channels with Dynamic priority
- ▲ Low-latency QoS control for Isochronous traffic flows

End-to-End QoS

- ▲ Improved, lower-latency flow-control with memory scheduler
- ▲ Non head-of-line blocking schemes with guaranteed delivery

Runtime Programmability

- ▲ Runtime programmable weighted BW allocation
- ▲ Adaptive control to DVFS modes without software intervention

NetSpeed Gemini Components

Functional Safety: ISO 26262 ASIL-D

FuSa Architected In With Top-Down Approach

- ▲ FuSa features considered first class citizens from Day #1
- ▲ Interplays cleanly with coherency and ISO 26262 standard
- ▲ End-to-end protection, logic redundancy & timeouts

Unprecedented Configurability

- ▲ Fine grained FuSa feature control for low area overhead
- Design cockpit for Performance vs. FuSa vs. area tradeoffs
- ▲ Rapid analysis and convergence

ASIL-D Ready

- → First & Only Coherent Interconnect IP
- Detailed FMEDA analysis & reporting for any configuration
- ▲ Comprehensive Safety Manual & Safety Report

Design Cockpit: Balancing Performance vs. Area vs. FuSa

NetSpeed Design Cockpit

FMEDA, Safety Manual

Customer Case Study

Customer

- <u>Tier #1</u> Automotive manufacturer and Tier #1 ADAS company
- Architecture and frontend design by customer
- Back-end by 3rd party ASIC vendor

Challenge

- Many clusters of CPUs and proprietary accelerators requiring <u>high-bandwidth</u>, <u>low latency</u>, distributed <u>coherent interconnect</u>.
- No other solution in the market has <u>Robust Real-time QoS</u> support
- Reliability and safety features for ADAS market

Solution

- Scalable Gemini performance far exceeds competing interconnect capabilities
- <u>User-controlled automation</u> with integrated performance analysis allows architect to tune
 Bandwidth/latency/area tradeoffs for specific traffic flows
- Functional safety architected into interconnect, configured on a per-traffic-flow granularity

Customer Case Study

Performance Coherency → Configurable Coherency Latency → 30% lower Bandwidth → 20% higher @ saturation → ASIL-D FuSa **Design Time** Timing closure → First time timing clean through P&R Wires -> Reduced congestion seen during layout → Automatically inserted by physical aware flow Buffers Other Customizable → Functional safety levels tailored to traffic flow Start-Finish → 9 months

NetSpeed Technology: Choice of Next-Gen Application Leaders

NetSpeed Systems

Summary

HETEROGENEOUS ARCHITECTURES

 Cache coherency critical for delivering high performance

NETSPEED TECHNOLOGY

■ Scalable coherency solution with uniform view of system memory

REALTIME SENSOR PROCESSING

▲ Complex IP interactions needing sophisticated QoS schemes

NETSPEED TECHNOLOGY

▲ Advanced QoS schemes with traffic isolation & BW allocation

SAFETY & RELIABILITY

▲ Functional Safety needs to be architected, not added-on

NETSPEED TECHNOLOGY

▲ ASIL-D Ready: Robust safety mechanisms architected in IP

