iscover the philisophy behind EEP LEARNING

DeePhi Tech Bandwidth-Centric Deep Learning Processing through Software-Hardware Co-Design

Song Yao 姚颂 Founder & CEO DeePhi Tech 深鉴科技 song.yao@deephi.tech

© 2017 DeePhi Tech. All Rights Reserved.

Outline

- About DeePhi Tech
- Background
- Bandwidth Matters
- Software-Hardware Co-Design Method and Results
- Summary

About DeePhi Tech (深鉴科技)

A Brief History

DEEPHi

DeePhi Team: Pioneer in Exploring Sparsity for Deep Learning

iscover the philisophy behind

EEP LEARNING

- First Paper in the World on Compressed and Sparse Neural Networks "Learning both Weights and Connections for Efficient Neural Networks", NIPS 2015 "Deep Compression", ICLR 2016 Best Paper
- First Paper in the World on Sparse Neural Network Processor "EIE: Efficient Inference Engine on Compressed Deep Neural Network", ISCA 2016
- First Practical Case Using Sparse Neural Network Processor Collaboration with Sogou Inc, partly revealed in: "ESE: Efficient Speech Recognition Engine with Compressed LSTM on FPGA", FPGA 2017 Best Paper
- First Full-Stack Development Kit for Sparse Neural Network: DNNDK[™]
- Filed Dozens of Patents in both China and the U.S.

Two Solutions for both Embedded Cases and Data Center

Background Deep Learning for Everything

AI: The Future of Human Society

Success of AI = Data + Algorithm + Computing Platform

We Need To Thank GPU

Cat Face Recognition 1000 Servers, 16000 CPU

Andrew Ng & Jeff Dean, Google, 2012

AlexNet for ImageNet 1 Server, 2 GPU

Geoffrey Hinton, 2012

New Computing Platforms are Coming

Motivation: Bandwidth Matters

Low Utilization and High Power Come from Memory Access

Utilized computing units

Too many memory accesses result in high power

Bandwidth Limits Real Performance

						1		
Application	MLP0	MLP1	LSTM0	LSTM1	CNN0	CNNI	Mean	Row
Array active cycles	12.7%	10.6%	8.2%	10.5%	78.2%	46.2%	28%	1
Useful MACs in 64K matrix (% peak)	12.5%	9.4%	8.2%	6.3%	78.2%	22.5%	23%	2
Unused MACs	0.3%	1.2%	0.0%	4.2%	0.0%	23.7%	5%	3
Weight stall cycles	53.9%	44.2%	58.1%	62.1%	0.0%	28.1%	43%	4
Weight shift cycles	15.9%	13.4%	15.8%	17.1%	0.0%	7.0%	12%	5
Non-matrix cycles	17.5%	31.9%	17.9%	10.3%	21.8%	18.7%	20%	6
RAW stalls	3.3%	8.4%	14.6%	10.6%	3.5%	22.8%	11%	7
Input data stalls	6.1%	8.8%	5.1%	2.4%	3.4%	0.6%	4%	8
TeraOps/sec (92 Peak)	12.3	9.7	3.7	2.8	86.0	14.1	21.4	9
· · · · · · · · · · · · · · · · · · ·					•			

Too large to be Store everything stored on chip on chip

Source: Google TPU paper, ISCA 2017

You Can Move Everything on Chip

DaDianNao: 36MB eDRAM Source: Yunji Chen et al., "DaDianNao...", Micro 2014

ShiDianNao: 256KB SRAM Source: Zidong Du et al., "ShiDianNao ...", ISCA 2015

EIE:10.13MB SRAM Source: Song Han et al., "EIE: …", ISCA 2016

TPU:28MB SRAM Source: Norman et al., "In-Datacenter: ...", ISCA 2017

Efficient Architecture Design Exploiting Data Locality

Jaehyeong Sim et al., "A 1.4TOPS/W...", ISSCC 2016

Jaehyeong Sim et al., "A 1.4TOPS/W...", ISSCC 2016

Jiantao Qiu et al., "Going deeper...", FPGA 2016

You Should Also Combine Software Compression together

$$F(2,3) = \begin{bmatrix} d_0 & d_1 & d_2 \\ d_1 & d_2 & d_3 \end{bmatrix} \begin{bmatrix} g_0 \\ g_1 \\ g_2 \end{bmatrix} = \begin{bmatrix} m_1 + m_2 + m_3 \\ m_2 - m_3 - m_4 \end{bmatrix}$$
(5)
$$m_1 = (d_0 - d_2)g_0 \qquad m_2 = (d_1 + d_2)\frac{g_0 + g_1 + g_2}{2}$$

$$m_4 = (d_1 - d_3)g_2 \qquad m_3 = (d_2 - d_1)\frac{g_0 - g_1 + g_2}{2}$$

Winograd Andrew Lavin et al., "Fast...", arxiv:1509.09308

Decomposition like GSVD Xiangyu Zhang et al., "Effcient...", arxiv:1411.4229

Song Han et al., "Deep Compression...", ICLR 2016

Matthieu et al., arXiv:1602.02830v3 Mohammad et al., arXiv:1603.05279v1;

Geoffrey Hinton et al., arxiv:1503.0253 © 2017 DeePhi Tech. All Rights Reserved.

Considering Software and Hardware Together

Software-Hardware Co-Design Method

© 2017 DeePhi Tech. All Rights Reserved.

Deep Compression: Make Neural Networks Sparse

Before pruning:

A brown dog is running through a grassy field

Prune to 10%:

a brown dog is running through a grassy area

Before pruning:

A basketball player in a white uniform is playing with a ball

Prune to 10%:

A basketball player in a white uniform is playing with a basketball

30x – 50x compression rate without hurting accuracy

Not only weights, but also sparsity pattern encodes information

How Sparsity Benefits Computing

"Sparsity will have high priority in future designs."

— Google TPU Paper

Entire Workflow Considering Sparsity

• Supports mainstream deep learning object detection framework

• • •

ELEMENT

WISE

AVG

POOL

MAX

POOL

ROI

POOL

DEEPHi

Aristotle (V2) on FPGA: Latency Comparison

400 16 150.00 160 364 14.30 347.00 350 14 140 300 12 120 250 10 9.04 100 88 176 200 8 80 152.6 59.4 53 150 6 60 42.4 96.5 88 100 40 4 27 2.54 2.18 1.66 50 2 20 0.83 0 0 0 **VGG16 YOLO** Tiny **Face Alignment** ■TK1 TX1 (FP32) Zynq 7020 V2 TX1 (FP16) Zyng 7020 ZU2CG V2

Runtime with different network and platform (ms)

- Aristotle on Zynq 7020: 214 MHz
- Aristotle V2 on Zynq 7020 and ZU2CG: 200 MHz and 400 MHz

All results are measured with CuDNN at single batch mode

Descartes: RNN Processing Platform

Descartes: Evaluation Platform Comparison

KU060 FPGA 20nm 4.75MB BRAM 2 DDR3 2760 DSP 200MHz

Pascal Titan X GPU 16nm 480 GB/s 12GB GDDR5X 3584 CUDA Cores 1.53 GHz CuBLAS/CuSPARSE

Descartes: Performance and Power Comparison

Plat.	ESE on FPGA (ours)							CPU		GPU			
Matrix	Matrix Size	Sparsity (%) ¹	Compres.	Theoreti.	Real	Total	Real	Equ.	Equ.	Real Co	mput. Real Com		Comput.
			Matrix	Comput.	Comput.	Operat.	Perform.	Operat.	Perform.	Time	(µs)	Tim	e (µs)
			(Bytes) ²	Time (µs)	Time (µs)	(GOP)	(GOP/s)	(GOP)	(GOP/s)	Dense	Sparse	Dense	Sparse
W_{ix}	1024×153	11.7	18304	2.9	5.36	0.0012	218.6	0.010	1870.7	1518.4 ³	670.4	34.2	58.0
W_{fx}	1024×153	11.7	18272	2.9	5.36	0.0012	218.2	0.010	1870.7				
W_{cx}	1024×153	11.8	18560	2.9	5.36	0.0012	221.6	0.010	1870.7				
W_{ox}	1024×153	11.5	17984	2.8	5.36	0.0012	214.7	0.010	1870.7				
W_{ir}	1024×512	11.3	59360	9.3	10.31	0.0038	368.5	0.034	3254.6	2225.04	2288.0	Q1 3	166.0
W_{fr}	1024×512	11.5	60416	9.4	10.01	0.0039	386.3	0.034	3352.1				
W_{cr}	1024×512	11.2	58880	9.2	9.89	0.0038	381.2	0.034	3394.5	5225.0	2200.0	01.5	100.0
W_{or}	1024×512	11.5	60128	9.4	10.04	0.0038	383.5	0.034	3343.7				
W_{ym}	512×1024	10.0	52416	8.2	15.66	0.0034	214.2	0.034	2142.7	1273.9	611.5	124.8	63.4
Total	3248128	11.2	364320	57.0	82.7	0.0233	282.2	0.208	2515.7	6017.3	3569.9	240.3	287.4

		Core i7-5	930K CPU	Pascal Titan X GPU		
		Dense	Sparse	Dense	Sparse	
Performance	3.48	0.048	0.081	1.20	1	
Power	41W	111W	38W	202W	136W	
Energy Efficiency	11.5	0.057	0.285	0.802	1	

Summary

Do It through Software-Hardware Co-Design!

- Bandwidth is the bottleneck
- Methods to solve the problem
 - Move everything on chip
 - Use updated memory technology
 - Design efficient architecture
 - Employ compression on algorithm
- Software-Hardware Co-Design
 - Combining model compression and customized processor
- ~10X energy efficiency compared with GPU

iscover the philisophy behind EEP LEARNING

THANKS FOR WATCHING

Song Yao 姚颂 Founder & CEO DeePhi Tech 深鉴科技 song.yao@deephi.tech