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About DeePhi Tech (深鉴科技) 



A Brief History 
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Early 2017 
A Round 

Early 2013 
Research began 

2016.3 
DeePhi founded 

2016.4 
Angel Round 
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DeePhi Team：Pioneer in Exploring Sparsity for Deep Learning 
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•  First Paper in the World on Compressed and Sparse Neural Networks 
 “Learning both Weights and Connections for Efficient Neural Networks”, NIPS 2015 
 “Deep Compression”, ICLR 2016 Best Paper 

 
•  First Paper in the World on Sparse Neural Network Processor 

 “EIE: Efficient Inference Engine on Compressed Deep Neural Network”, ISCA 2016 
 
•  First Practical Case Using Sparse Neural Network Processor 

 Collaboration with Sogou Inc, partly revealed in： 
 “ESE: Efficient Speech Recognition Engine with Compressed LSTM on FPGA”,  
 FPGA 2017 Best Paper  

 
•  First Full-Stack Development Kit for Sparse Neural Network：DNNDKTM 

•  Filed Dozens of Patents in both China and the U.S. 

Page 5 



Two Solutions for both Embedded Cases and Data Center 

Pedestrian Det 
Object Tracking 

Vehicle Recognition 
…… 

Data Center Surveillance 
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DPU 
Core 
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Deep Learning for Everything 
Background 
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Internet 

Mobile 
Internet 

AI 

PC 

Mobile 
Phone 

AI: The Future of Human Society	�
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Success of AI = Data + Algorithm + Computing Platform 
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Data Algorithm 
Computing 

Platform 

Exploit Support 
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We Need To Thank GPU 
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Cat Face Recognition 
1000 Servers，16000 CPU 

 
Andrew Ng & Jeff Dean, Google, 2012 

AlexNet for ImageNet 
1 Server，2 GPU 

 
Geoffrey Hinton, 2012 
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New Computing Platforms are Coming 
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Google TPU V1 Microsoft, Amazon: FPGA 
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Cloud 

Edge 
Tr

ai
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ng
 Inference

 

Google TPU V2 

Movidius DSP DeePhi DPU 

What is the key factor 
in deep learning processing? 
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Motivation: Bandwidth Matters 
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Insufficient bandwidth starves computing units 

Time 

Too many memory accesses result in high power 
Source: Song Han et al., “Learning…”, NIPS 2015 

Utilized 
computing units 

Low Utilization and High Power Come from Memory Access 
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Bandwidth Limits Real Performance 

Store everything 
on chip 

Too large to be 
stored on chip 
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DaDianNao: 36MB eDRAM 
Source: Yunji Chen et al., “DaDianNao…”, 

Micro 2014 

ShiDianNao: 256KB SRAM 
Source: Zidong Du et al., 

“ShiDianNao …”, ISCA 2015 

EIE:10.13MB SRAM 
Source: Song Han et al., 

“EIE: …”, ISCA 2016 

TPU:28MB SRAM 
Source: Norman et al.,  

“In-Datacenter: …”, ISCA 2017 

You Can Move Everything on Chip 
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Intra layer 
date reuse 

Inter layer 
data reuse 

Jaehyeong Sim et al., “A 1.4TOPS/W…”, ISSCC 2016 
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Jiantao Qiu et al., “Going deeper…”, FPGA 2016 

Jaehyeong Sim et al., “A 1.4TOPS/W…”, ISSCC 2016 

Efficient Architecture Design Exploiting Data Locality 
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Winograd 
Andrew Lavin et al., “Fast…”, arxiv:1509.09308 

Deep compression 
Song Han et al., ”Deep Compression…”, ICLR 2016 

Decomposition like GSVD 
Xiangyu Zhang et al., “Effcient…”, arxiv:1411.4229 

Teacher 

Distilling 
Geoffrey Hinton et al., arxiv:1503.0253 

Binary Neural Network / XNOR-Net 
Matthieu et al., arXiv:1602.02830v3 

Mohammad et al., arXiv:1603.05279v1;  

Student 

You Should Also Combine Software Compression together 
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Architecture 

Physical (Size, Bandwidth, Process) 

Compression 

“Spiritual” 

Considering Software and Hardware Together 
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Software-Hardware Co-Design Method 
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30x – 50x compression rate without hurting accuracy 

Before pruning: 
A basketball player in a white 
uniform is playing with a ball 
 
Prune to 10%: 
A basketball player in a white 
uniform is playing with a basketball 

Before pruning: 
A brown dog is running through 
a grassy field 
 
Prune to 10%: 
a brown dog is running through 
a grassy area 

Not only weights, but also sparsity pattern encodes information 

Deep Compression: Make Neural Networks Sparse 
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How Sparsity Benefits Computing 

© 2017 DeePhi Tech. All Rights Reserved.  

Smaller 
and Faster 

 
Shorter latency in memory 

read and write 

Fewer 
Computations 

 
High equivalent 

performance 

Lower 
Power 

 
Significantly power reduction 

in memory operation 

“Sparsity will have high priority in future designs.” 

—— Google TPU Paper 
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Entire Workflow Considering Sparsity 

Inst 

Algorithm 
Development 

Software 
Stack 

FPGA 
ASIC 

Deep Compression 

Compilation 
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Aristotle架构：CNN处理器 Descartes架构：稀疏DNN/RNN处理器 

•  Designed for CNN Acceleration 
•  Supports all Conv sizes, stride size 
•  Scalable design (1PE, 2PE, 4PE, 12PE)  
•  Supports mainstream deep learning object detection framework 
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Aristotle: CNN Processing Platform 
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All results are measured with CuDNN at single batch mode 

•  Aristotle on Zynq 7020: 214 MHz 
•  Aristotle V2 on Zynq 7020 and ZU2CG: 200 MHz and 400 MHz 

Aristotle (V2) on FPGA: Latency Comparison 
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Make full use 
of all 

computing 
units 

Equivalent 
model with 

fewer 
computations 

Higher 
bandwidth 

Fewer 
memory 

accesses 

More 
computing 

units 

12-bit 
quantization 

Load 
balance 

Pruning Make full use of 
BRAM/Pipeline 

Dedicated 
buffer 

Pruning 
+ quantization 

Equivalent 
model with 
smaller size 

Descartes: RNN Processing Platform 
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KU060 FPGA 
20nm 

4.75MB BRAM 
2 DDR3 

2760 DSP 
200MHz 

Pascal Titan X GPU 
16nm 

480 GB/s 
12GB GDDR5X 

3584 CUDA Cores 
1.53 GHz 

CuBLAS/CuSPARSE 

Descartes: Evaluation Platform Comparison 

Page 26 



© 2017 DeePhi Tech. All Rights Reserved.  

KU060@200MHz 
Core i7-5930K CPU Pascal Titan X GPU 

Dense Sparse Dense Sparse 
Performance 3.48 0.048 0.081 1.20 1 

Power 41W 111W 38W 202W 136W 

Energy Efficiency 11.5 0.057 0.285 0.802 1 

Descartes: Performance and Power Comparison 
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Summary 
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Do It through Software-Hardware Co-Design! 

•  Bandwidth is the bottleneck 
•  Methods to solve the problem 

-  Move everything on chip 
-  Use updated memory technology 
-  Design efficient architecture 
-  Employ compression on algorithm 

•  Software-Hardware Co-Design 
-  Combining model compression and customized processor 

•  ~10X energy efficiency compared with GPU 
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