

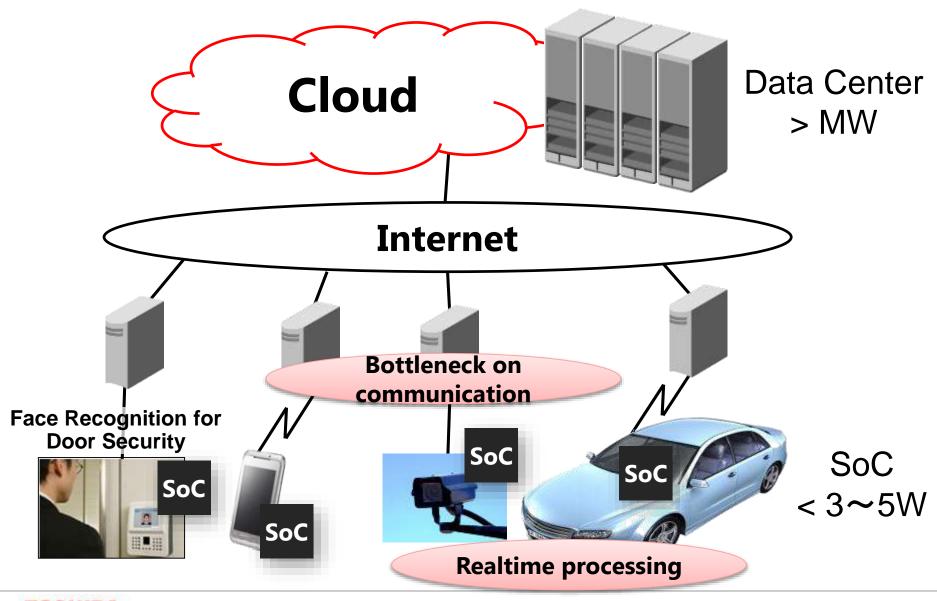
Efficient Implementations of Deep Neural Network Hardware

Takashi Miyamori, General Manager Center for Semiconductor Research & Development

Toshiba Electronic Devices & Storage Corporation

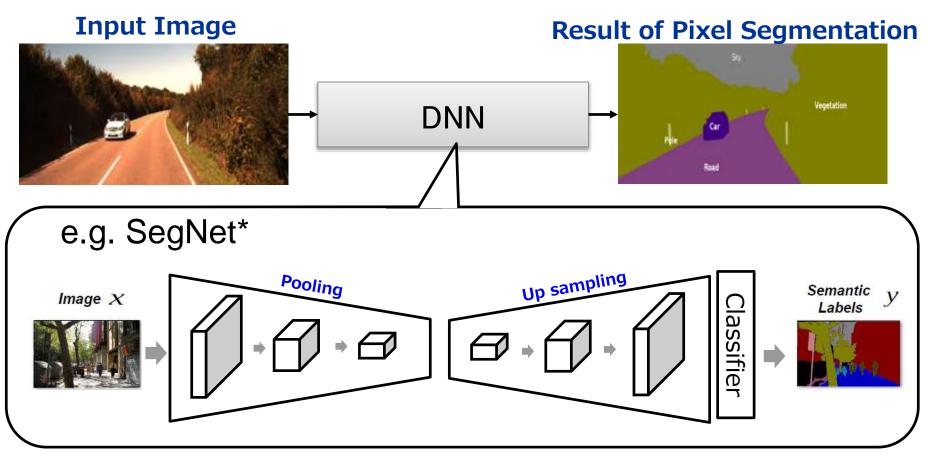
© 2017 Toshiba Corporation

Deep Learning Everywhere



Semantic Segmentation

Classify objects in each pixel



*) Badrinarayanan, V., Kendall, A., Cipolla, R.: SegNet: A deep convolutional encoder-decoder architecture for image segmentation. arXiv preprint arXiv:1511.00561 (2015)

Road Detection by DNN

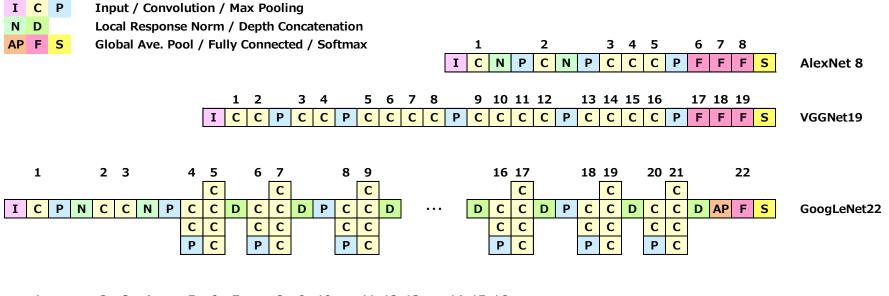
- Technology Trends
- LOGNET: energy-efficient neural networks using logarithmic computation (Stanford Univ. & Toshiba) [ICASSP 2017]
- TDNN: Time-Domain Neural Network (Toshiba) [A-SSCC 2016]

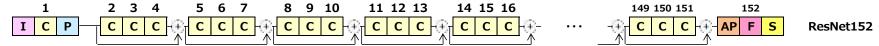
Efficient DNN Implementations

Improvement of Network Models

- GoogLeNet, ResNet
- Reduction of Parameters(# of data, bit width) and Compression
 - Deep Compression (Stanford): Pruning, Quantization, Huffman Coding
 - Binarized Neural Networks (Univ. of Montreal)

Improvement of Network Models





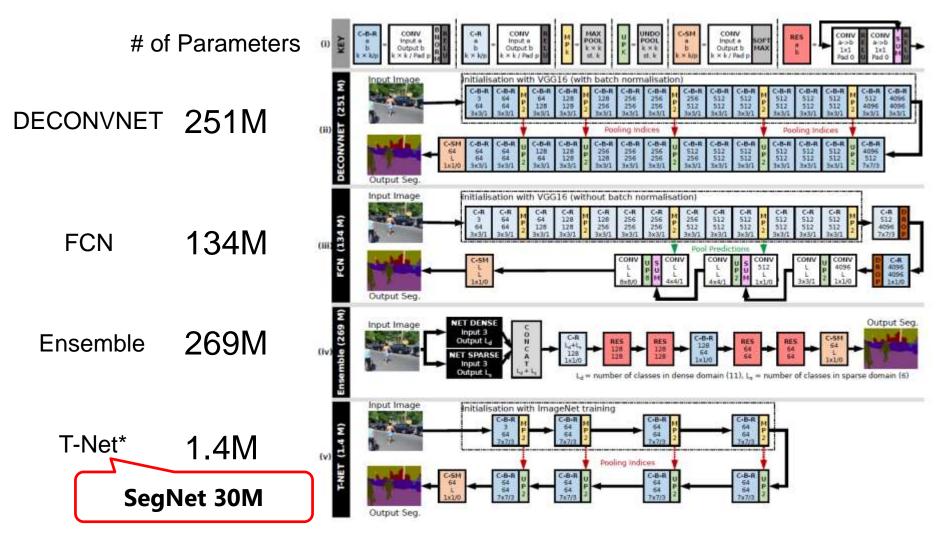
Model	AlexNet	VGG	GoogLeNet	ResNet
Organization	Univ. of Tronto	Oxford Univ.	Google	Microsoft Research Asia
Year	2012	2014	2014	2015
ILSVRC* Error Rate	15.30%	7.33%	6.66%	3.57%
# of Layers	8	19	22	152
# of Parameters[M]	62.4	144	7.0	56.0
# of Operations[B]	1.14	19.6	1.5	11.3

*) ILSVRC: ImageNet Large Scale Visual Recognition Challenge

Based on slides of Dr. Momose, Hokkaido Univ. https://www.semiconportal.com/archive/contribution/applications/160804-neurochip2-2.html

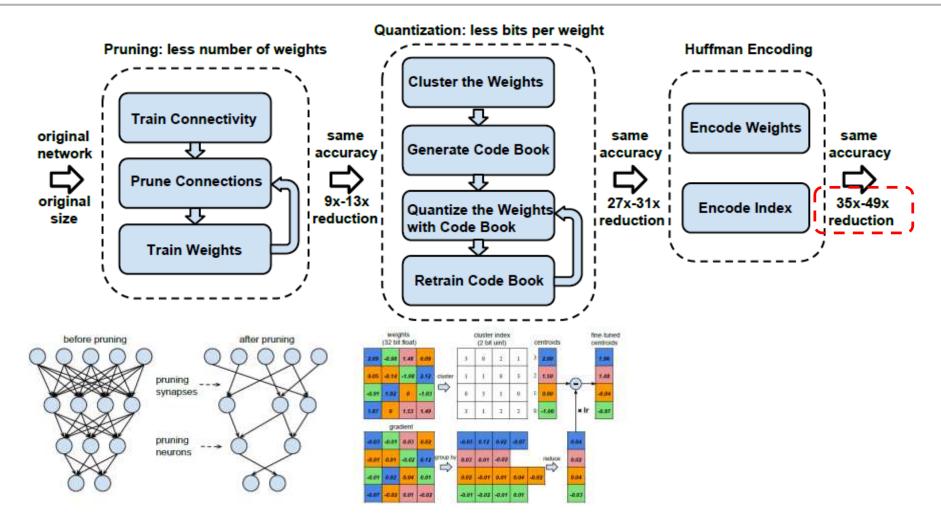
7

Road Scene Semantic Segmentation



*) Training constrained deconvolutional networks for road scene semantic segmentation G Ros, S Stent, PF Alcantarilla, T Watanabe, arXiv preprint, arXiv:1604.01545 (2016)

Deep Compression (Stanford)

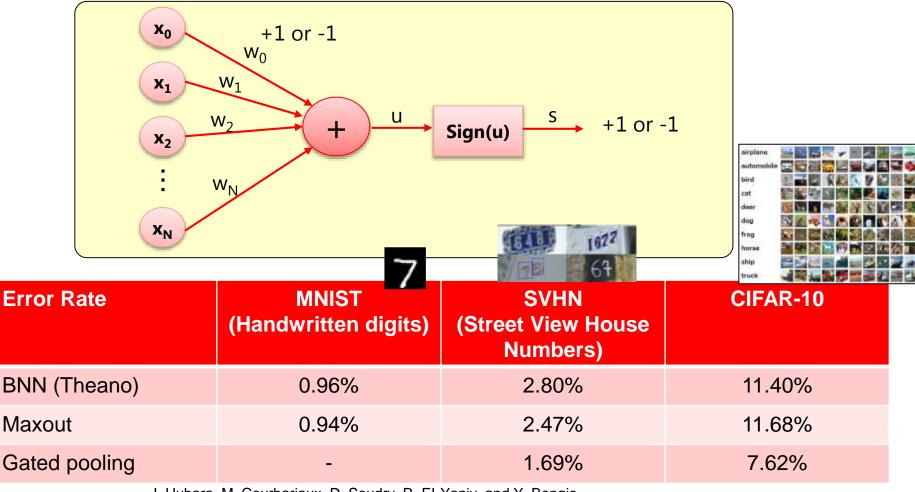


Song Han, Huizi Mao, and William J. Dally, "Deep compression: Compressing deep neural network with pruning, trained quantization and huffman coding," arXiv preprint arXiv:1510.00149, 2015.

Song Han, Jeff Pool, John Tran, and William Dally, "Learning both weights and connections for efficient neural network," in Proceedings of Advances in Neural Information Processing Systems 28 (NIPS2015), 2015, pp. 1135-1143.

Binarized Neural Networks (Univ. of Montreal)

 Neural networks with binary weights and activations (+1/-1) except for the first and the last layers



I. Hubara, M. Courbariaux, D. Soudry, R. El-Yaniv, and Y. Bengio,

"Binarized neural networks," Advances in Neural Information Processing Systems 29, 2016, pp. 4107-4115...

Outline

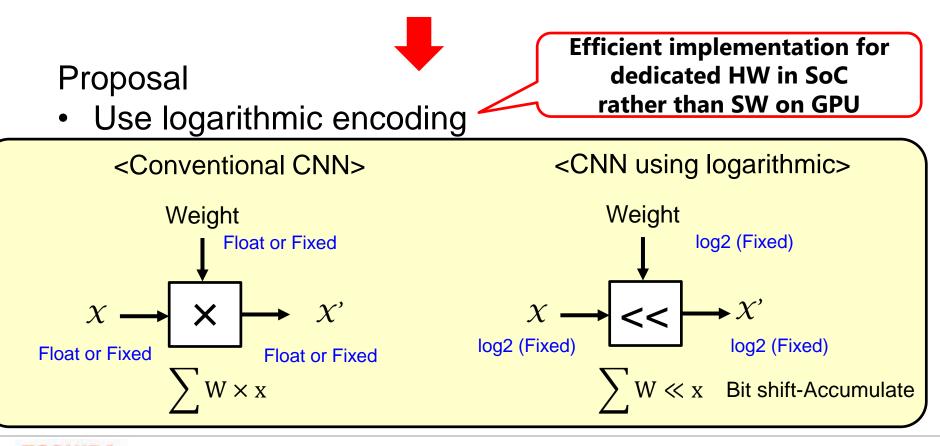
Technology Trends

- LOGNET: energy-efficient neural networks using logarithmic computation (Stanford Univ. & Toshiba) [ICASSP 2017] [arXiv:1603.01025]
- TDNN: Time-Domain Neural Network (Toshiba) [A-SSCC 2016]

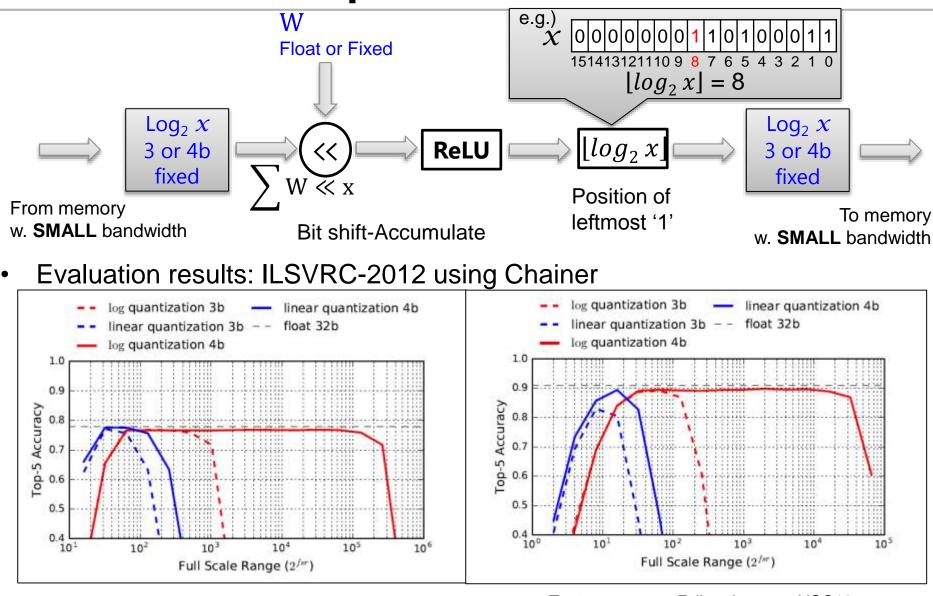
Motivation of LOGNET

To realize energy-efficient neural networks

- Data representation with fewer bits
- Eliminate multiplications



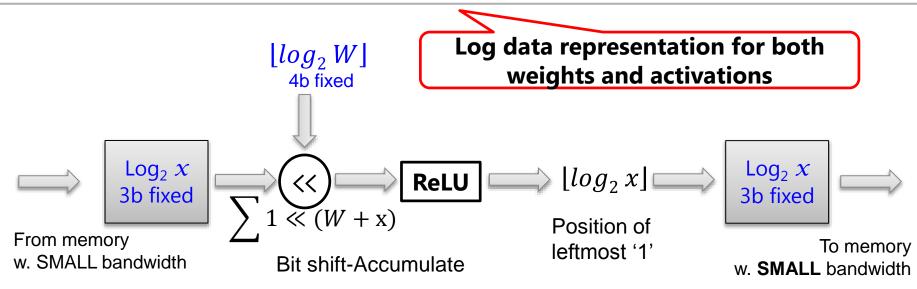
Evaluation of Proposed 1



Top5 accuracy vs Full scale range: AlexNet

Top5 accuracy vs Full scale range: VGG16

Evaluation of Proposed 2

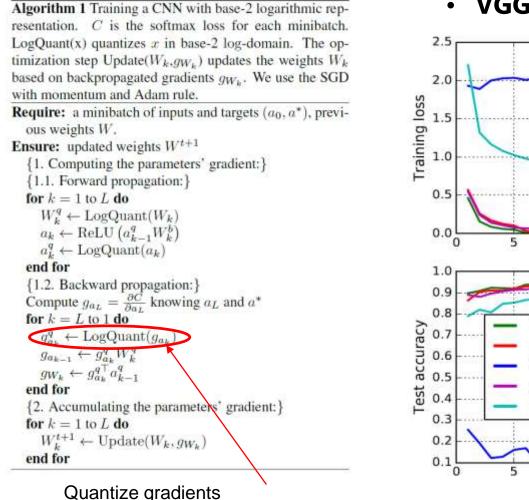


 Top-5 accuracies after linear and log2 encoding on all layers' weight without retraining

Model	Float 32b	Lin. 4b	$\log_2 4b$	Lin. 5b	$\log_2 5b$
AlexNet	78.3%	1.6%	73.4%	71.0%	74.6%
VGG16	89.8%	0.5%	85.2%	83.2%	86.0%

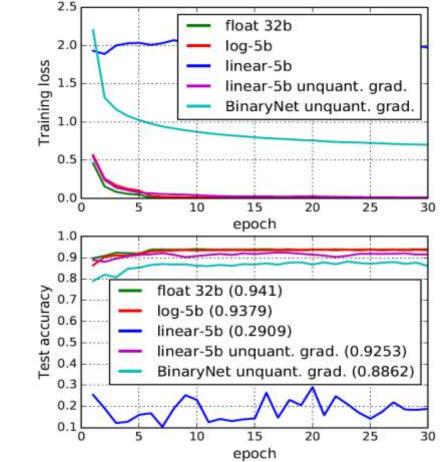
Training with Logarithmic Representation

Training Algorithm



CIFAR10 database

VGG-like network

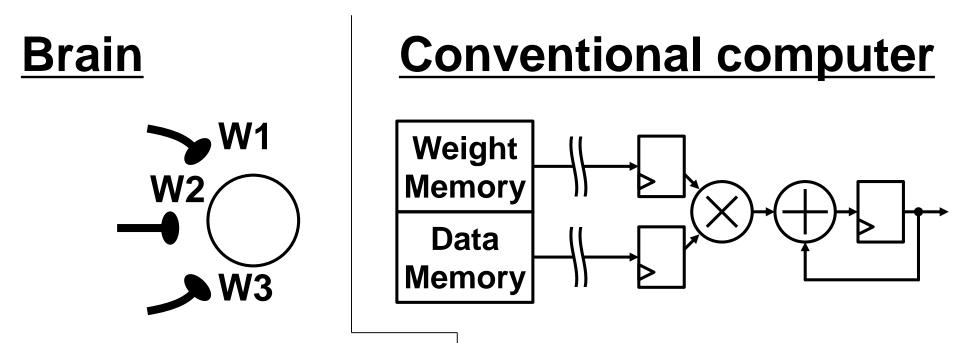


Enables end-to-end training using logarithmic representation at 5b level

Outline

- Technology Trends
- LOGNET: energy-efficient neural networks using logarithmic computation (Stanford Univ. & Toshiba) [ICASSP 2017]
- TDNN: Time-Domain Neural Network (Toshiba) [A-SSCC 2016]

Why the brain is so energy efficient?

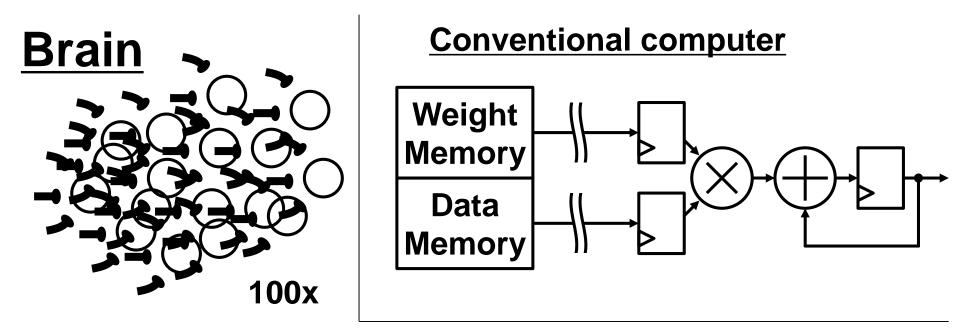


Weight is built into each synapse. Don't need to move weight at all. Power efficient!! Load weight from memory for EVERY calculation. Power hungry!!

Operation	Relative Cost (Energy)		
32 bit int ADD	1		
32 bit int MULT	31		
32 Register File	10		
32 bit SRAM	50		
32 bit DRAM Memory	6400		

How about hardware efficiency?

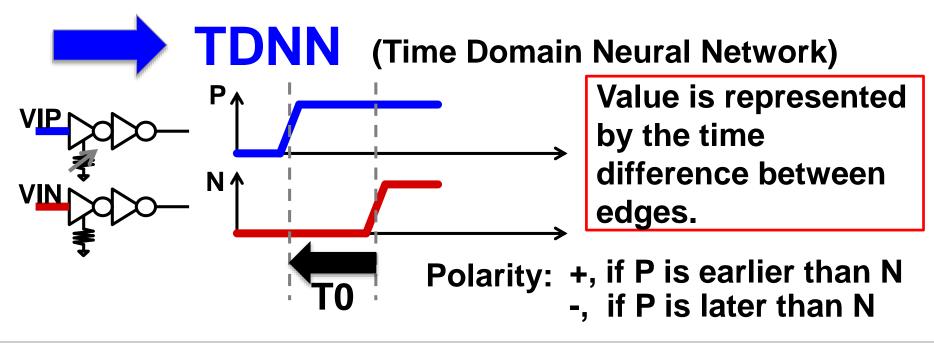
e.g. The number of weights \rightarrow 100x



Need to have 100x processing elements. Because each processing element (PE) is dedicated to each weight. Need to minimize each PE!!

Our strategy

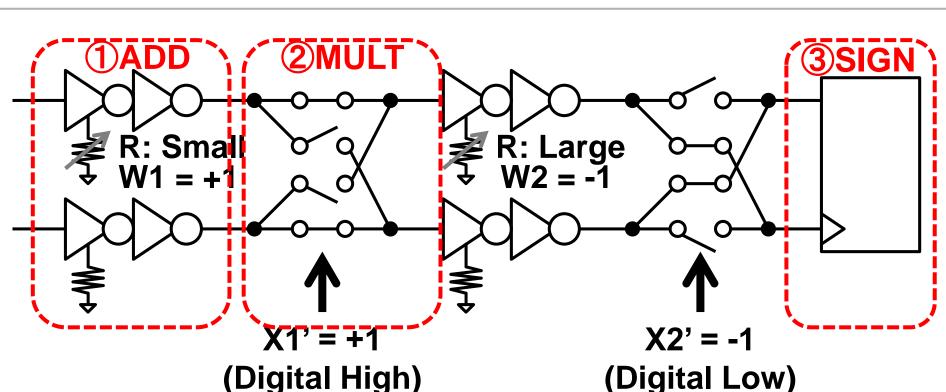
- In order to maximize the energy efficiency, we propose to employ fully spatially unrolled architecture (like the brain).
- In order to minimize the hardware size, we propose to employ Time Domain Analog and digital Mixed Signal processing (TDAMS) [11].



SIGN(W1X1 + W2X2)

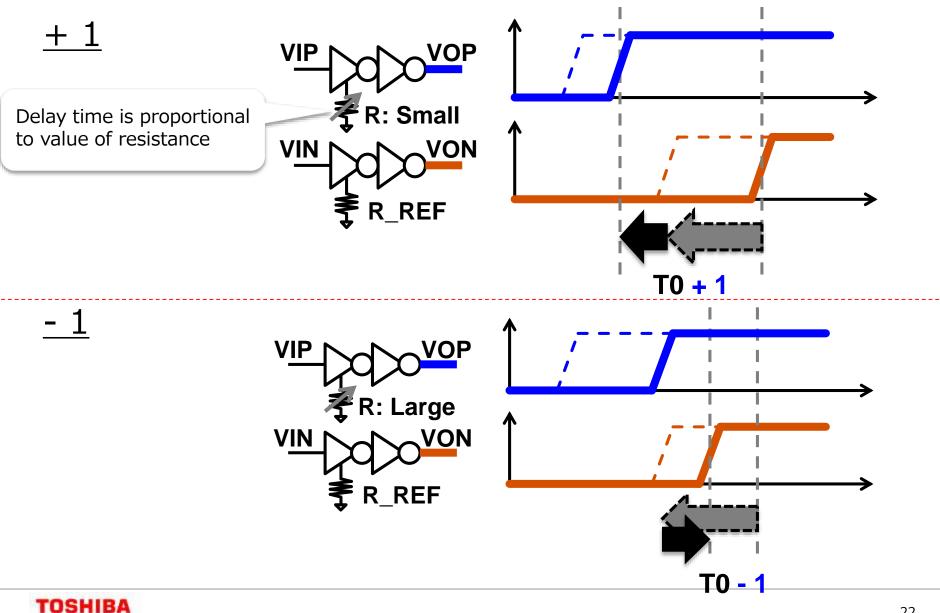
(W1×X1'+W2)×X2' = W1X1'X2' +W2X2'

X_i' = XOR(X_i, X_i+1)



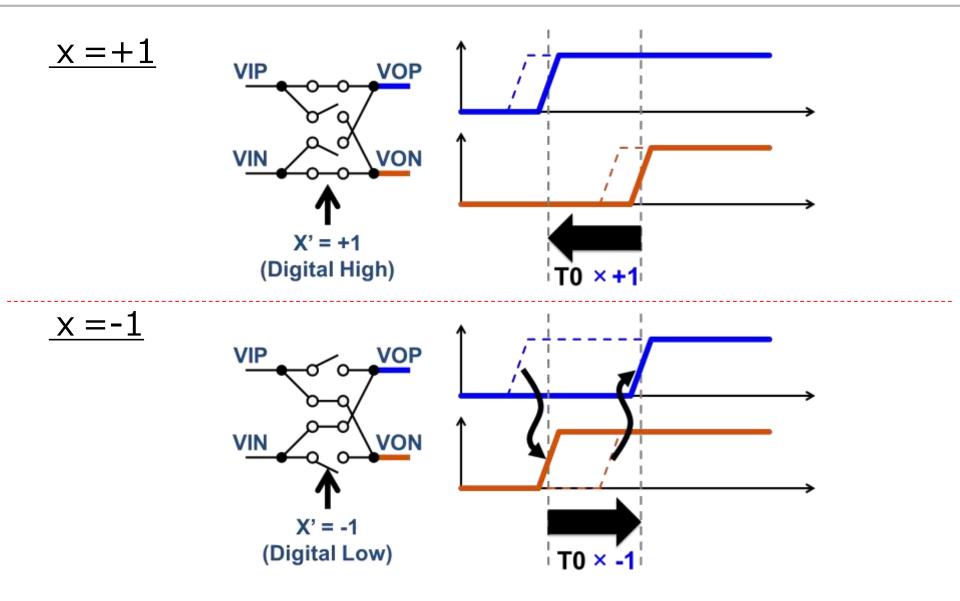
TDAMS – Convolution

TDAMS - ADD

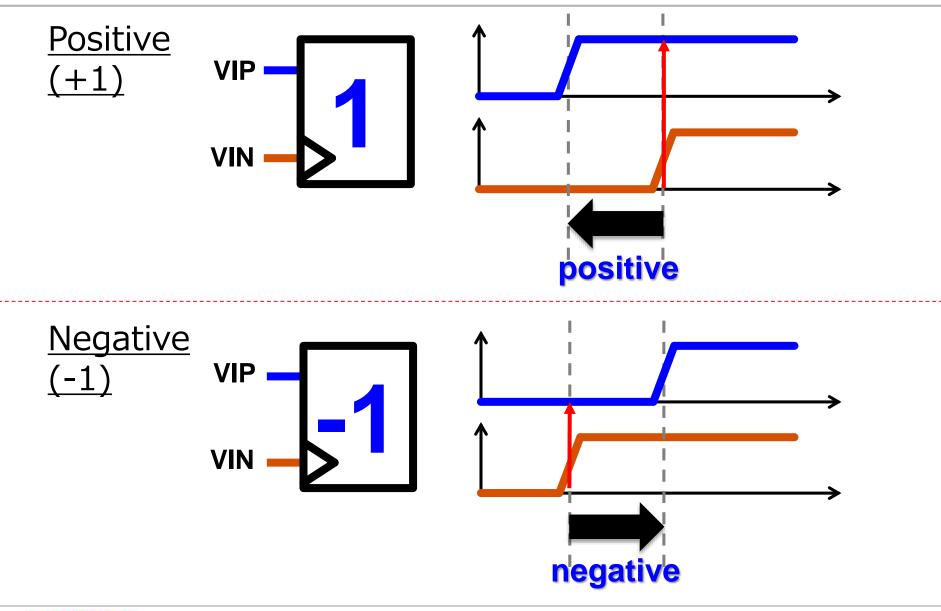


Leading Innovation >>>

TDAMS - Multiplication



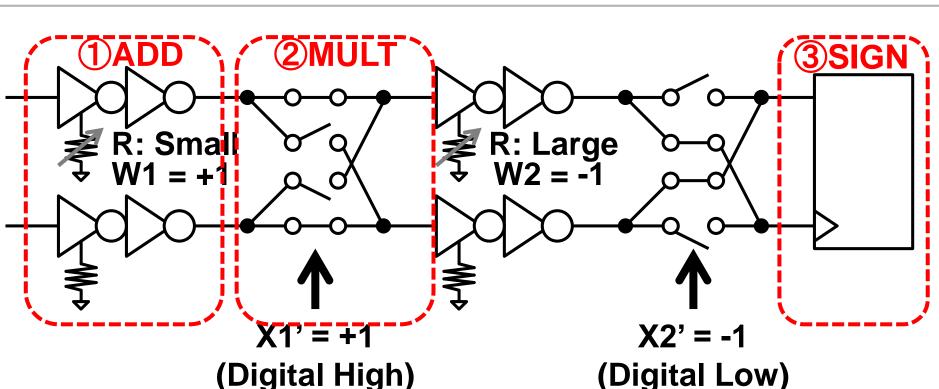
TDAMS ~ Activation (SIGN)



SIGN(W1X1 + W2X2)

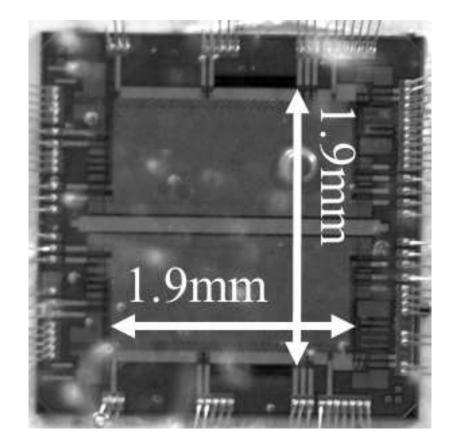
$(W1 \times X1' + W2) \times X2' = W1X1'X2' + W2X2'$

X_i' = XOR(X_i, X_i+1)



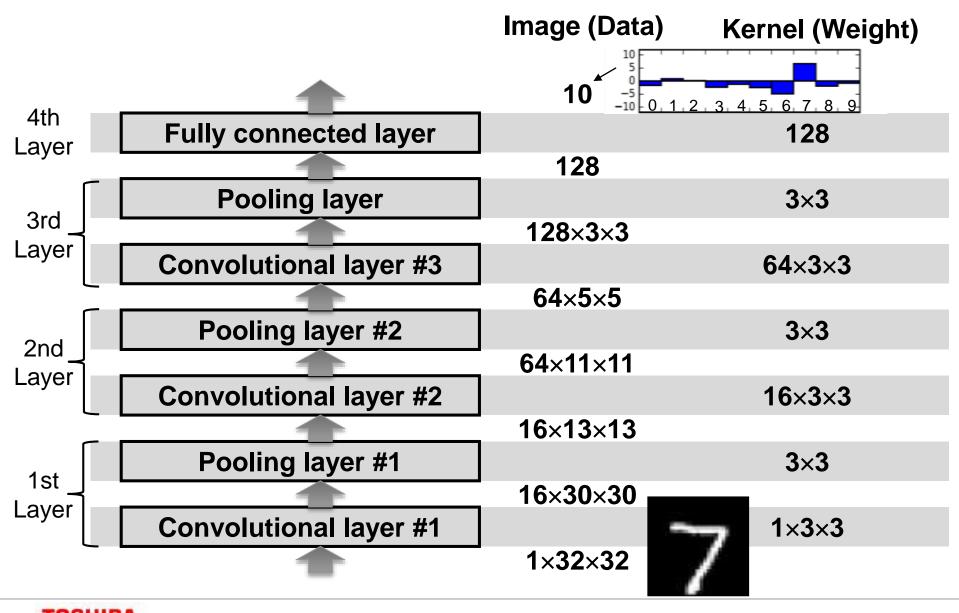
TDAMS – Convolution

Chip photograph

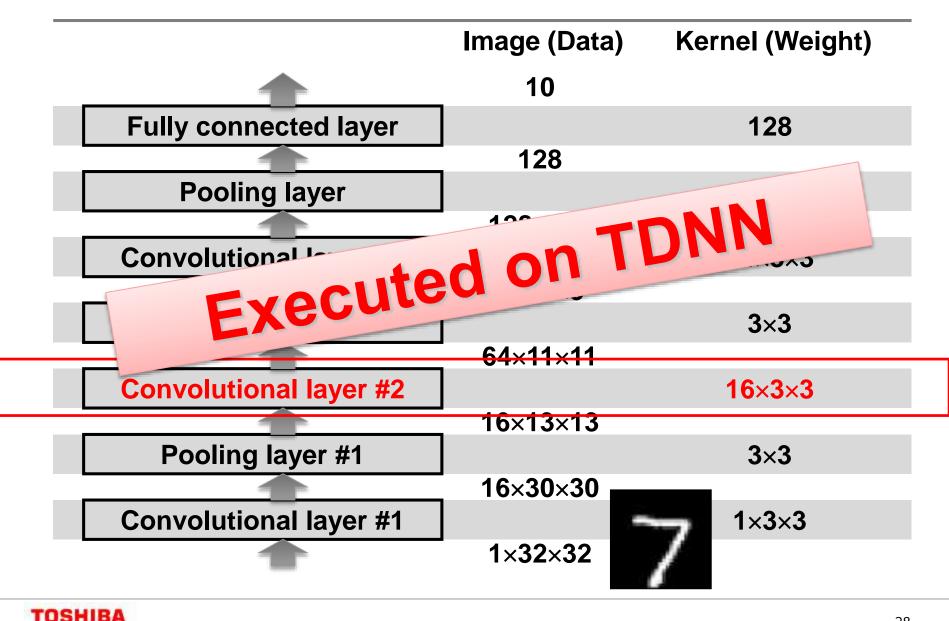


65nm CMOS technology # of processing elements: 32768

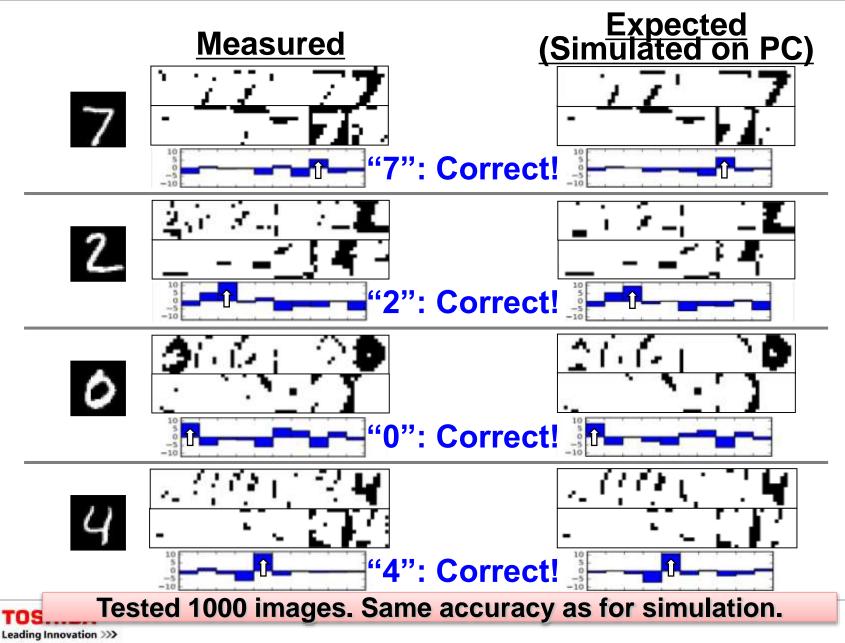
Experimental results



Experimental results



Experimental results

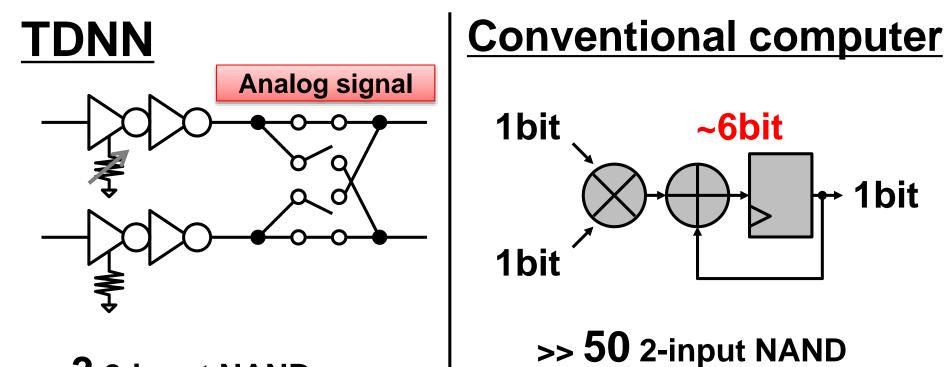


Performance comparison

Energy efficiency is 10x better than ISSCC 2016[3].						
	Blueprint w/ ReRAM	Test chip w/ SRAM	GLS-VLSI 2015[1]	Science [2]	ISSCC2016 [3]	
Tech.[nm]	65	65	65	28	40	
Chip area [mm ²]	-	3.61ª	1.31ª	430	0.012	
Energy efficiency [TSOp/s/W]	48.2 ^b	48.2 ^b	0.402	0.039 ^[6] 0.4 ^[7]	3.86 ^c	
Hardware efficiency ^d [GE/PE]	3	76.5	4641 ^a	6.5	288	
^{a.} core area including SRAM, ^{b.} excludes external I/O, ^{c.} excludes CML ^{d.} 1GE:1.44um ² (65nm), 0.65 um ² (40nm), 0.49 um ² (28nm)						

 L. Cavigelli and L. Benini, "Origami: A 803 gop/s/w convolutional network accelerator," arXiv preprint arXiv: 1512.04295, 2015
P. A. Merolla, et al., "A million spiking-neuron integrated circuit with a scalable communication network and interface," Science, vol. 345, no.6197, pp. 668-673, 2014.
E. H. Lee and S. S. Wong, "A 2.5ghz 7.7tops/w switched-capacitor matrix multiplier with co-designed local memory in 40nm," in ISSCC Dig. Tech. Papers, pp. 418-419, 2016.

Blue print with ReRAM



= **3** 2-input NAND

+ memory cell (e.g. ReRAM)

$1.5 \,\mu m^2 @28nm = 230M PEs / 4 cm^2$ cf. ResNet*: 230M parameters

Leading Innovation >>>

*) K. He, X. Zhang, S. Ren, and J. Sun, "Deep residual learning for image recognition," arXiv preprint arXiv: 1512.03385, 2015.

1bit

Summary

 Efficient Implementations of DNN are required for embedded systems and edge devices

Efficient Implementations

- Improvement of Network Models.
 - Simple Network Models (e.g. GoogLeNet, ResNet)
- Reduction of Parameters (# of data, bit width) and Compression
 - Deep Compression (Stanford): Pruning, Quantization, Huffman Coding
 - Binarized Neural Networks

Efficient Hardware Implementations

- LOGNET: energy-efficient neural networks using logarithmic computation
- TDNN(Time Domain Neural Network)
 - Fully spatially unrolled architecture (like the brain).
 - Time Domain Analog and digital Mixed Signal processing (TDAMS)

TOSHIBA Leading Innovation >>>