

Minimum Energy Point Tracking for Self-Powered IoT Processors

Tohru ISHIHARA Kyoto University

My Talk in MPSoC 2015 — Minimum Energy Point —

A set of V_{DD} and V_{TH} , which minimizes the energy consumption of a circuit for a given time constraint

Minimum Energy Point in a Processor

MEP: tangent point of frequency and energy contours

Obtained using post-layout simulation of a processor

Motivation of Finding MEP

MEP depends on <u>operating conditions</u>

Goal: develop algorithm for tracking MEP

Concept of MEP Identification

MEP Identification Function

s_f : slope of frequency contour

$$s_{f} = \frac{\alpha V_{DD}}{\alpha V_{DD} - (V_{DD} - V_{TH})} \quad \cdots \quad V_{DD} > V_{TH}$$

Control Parameters $s_{f} = 1 \quad \cdots \quad V_{DD} \le V_{TH}$

 s_e : slope of energy contour

Observed Parameters
$$s_e = \frac{E_s V_{DD}}{(2E_d + E_s)} \cdot \frac{1}{N_s}$$
 Linear to Temperature

Once E_d , E_s and T are obtained, MEP identification can be easily done.

S. Hokimoto, T. Ishihara, and H. Onodera, "Minimum energy point tracking using combined dynamic voltage scaling and adaptive body biasing," Proc. of *IEEE System-on-Chip Conference, Sep. 2016*

Leakage Sensor

- Leakage to digital converter [1]
- Leakage power is proportional to V_{DD} and oscillation frequency f_{leak}
- E_s is estimated from V_{DD} and f_{leak}
- k_s is calibrated at test-time

 $E_{s} = I_{leak}V_{DD}D = \frac{k_{s}f_{leak}V_{DD}^{2}}{D}$ Delay of a criticalpath replica

[1] I. Mahfuzul, J. Shiomi, T. Ishihara, and H. Onodera, "Wide-Supply-Range All-Digital Leakage Variation Sensor for On-Chip Process and Temperature Monitoring," *IEEE Journal of Solid-State Circuits 2015*

MEP Tracking Algorithm

Result of MEPT (20MHz \rightarrow 4MHz)

- 74% energy reduction obtained
- 16% energy reduction over DVFS
- The max tracking error is 1.2%

- 7% energy reduction obtained
- 12% energy reduction over DVFS
- The max tracking error is 2.5%

Result of MEPT (activity $1.0 \rightarrow 0.2$)

- 21% energy reduction obtained
- 8.4% energy reduction over DVFS
- The max tracking error is 2.4%

Conclusion and Future Work

- MEPT algorithm proposed
 - Algorithm validated by 32-bit RISC processor
 - Tracking error is only 2.5% at the worst case
 - Large energy reduction observed
 - 70% reduction observed when 20MHz \rightarrow 4MHz
- On-going work
 - Run-time measurement of *delay*, *E_d*, *E_s* and *temperature*