
Exploration of Cache Coherent CPU-
FPGA Heterogeneous System

Wei Zhang

Department of Electronic and Computer Engineering

Hong Kong University of Science and Technology

1

Outline
oIntroduction to FPGA-based acceleration

oHeterogeneous CPU-FPGA architecture

oA full system simulator for exploration of various CPU-
FPGA architectures

oA static and dynamic combined cache optimization strategy
for cache coherent CPU-FPGA system

oConclusion

2

FPGA based Acceleration

3

Field Programmable Gate Array

oFPGA accelerator
• Tens of times faster than CPU
• One to two orders of magnitude more

power efficient than CPU and GPU
• Post-fabrication reconfigurable

oFPGA usage in data center
• Microsoft, Baidu, Tencent
• 30% cost reduction

CPU‐FPGA System Architecture
oTraditional DMA based design:

• Manual efforts for DMA control
• Coherency handled by user
• Larger communication overhead

through DRAM
• Less hardware cost

oCache coherent design:
• Automatic coherence guarantee
• Simple programming model
• Smaller communication overhead

through LLC
• Good for scattered access and

large data space
• Intel Harp and IBM Power 8

4

Gem5‐HDL: Heterogeneous System Simulator

5

oPowerful support of gem5-HDL
• Cycle-Accurate Co-Simulation of

hardware accelerators and CPUs
 Based on gem5 and Verilator
 Accelerators described by Verilog

or C/C++
 FPGA model: Functionality, timing,

IO signals
• Shared coherent caches between CPUs

and accelerators on FPGA
• Runtime Control on accelerators
• Flexible Architecture for on-chip

interconnection work, NoC or BUS
• Cooperation between separate processes

based on Inter-Process Communication
Data

Control

Runtime Control Interface

6

Memory Management
oData Coherence

• Support both virtual address and physical address
• Protocol - MOESI
• Accelerator Coherent Port
FPGA-> L2 bus probe L1 of CPU

• Shared TLB
CPU allocates a space of virtual address for FPGA

7

Exploration of Memory Hierarchy

8

o Comparison of three different memory hierarchies
Hierarchy (A) Hierarchy (B) Hierarchy (C)

Shared Private

Experimental Setup

9

o Parameters for Memory Hierarchy

o Characteristics of PolyBench Benchmarks

CPU FPGA

Frequency Architecture Execution Frequency

2.67GHz X86 Out-of-Order 150MHz

FPGA SPM 32 KB-private, 4 cycles
L1 Cache 32 KB-private, 8-way associate, 4 cycles
L2 Cache 128KB-shared, 8-way associate, 12 cycles
Main Memory 512 MB, DDR3-1600

Benchmark 2mm floyd nussinov Jacobi-2d fdtd-2d heat-3d
Data
(KB)

20.4 16 16 64 59.7 211

• L1 Cache vs. SPM
• Frequent communication between CPU and FPGA
• If the amount of data > the size of SPM
• the performance of FPGA with L1 > the performance of FPGA with SPM
• SPM costs less area and energy than L1 Cache
• L1 Cache√

Experimental Results

10

= FPGA - L1 - L2

= FPGA - SPM - L2

= FPGA - SPM - MEM

Data generated by CPU

Experimental Results

11

• Cache-coherent vs. DMA
• If the amount of data > the size of SPM
• Besides loading/unloading SPM, there are still many FPGA accesses to cache or

main memory; Cache helps to reduce the average latency of accesses
• Hierarchy (A) or (B) √
• If the amount of data <= the size of SPM
• Except loading/unloading SPM, there is no FPGA access to cache or main memory;

Using DMA can avoid the overhead of caches.
• Hierarchy (C) √

0

0.2

0.4

0.6

0.8

1

1.2

jacobi‐2d
(64kB)

fdtd‐2d
(59.7kB)

heat‐3d
(311kB)

2mm
(20.4kB)

floyd
(16kB)

nussinov
(16kB)

N
or
m
al
iz
ed

 E
xe
cu
tio

n
Ti
m
e

Benchmarks

hierarchy (A)

hierarchy (B)

hierarchy (C)

= FPGA - L1 - L2

= FPGA - SPM - L2

= FPGA - SPM - MEM

Data are pre-stored in main memory

FPGA L1 Cache Optimization Strategy

12

oStatic analysis of accelerated functions and
dynamic cache bypassing control

oEach kernel own one partition of the cache to
alleviate the contention

oDynamic control handles cache bypassing and
cache partitioning

Static LLVM
analysis pass

Vivado_HLS
and GCC
compiler

Applications and
accelerated
kernels

Whole system on Gem5‐
HDL with runtime control
module implemented

Kernel HDL
module and
software
executable

K values

Static Analysis and Dynamic Control

Control bypassing
and update the

partition table with
partition releasing

bypassing

FPGA cache

Access cache

Replacement
control for
partitioning

Cache miss

L2 cache

Partition and Bypassing Control

o A set of K values obtained from static
analysis to describe the cache
utilization information of each kernel

o Cache partition is assigned according
to K value

Reuse Distance Analysis

13

Experiment Results

PolyBench: floyd_warshall + covariance +
gesummv
Average improvement: 18.25%

• The improvement on cache hit rate
is %10~%20 for the tested
benchmarks compared with LRU

• The total performance is improved
by 1.5-6.5%.

• Resource overhead
 Partition table: 4 associativity

and 16KB cache only need
165B additional resource,
only 1%

• Latency overhead
 No additional delay overhead

for partition and bypassing
 Negligible compared with

large miss latency

14

Conclusion
o Develop a cycle-accurate full system simulator, gem5-HDL for
heterogeneous CPU-accelerator system
• Flexible run-time control
• Support various memory hierarchy
• Enable design space exploration

oPropose a static and dynamic combined cache optimization strategy for
optimizing the cache performance in cache coherent CPU-FPGA system
• Static analysis of data reuse in each kernel
• Dynamically assign partition and control cache bypassing
• Significantly improve the hit rate
• Negligible resource and latency overhead

15

