
Evolution of Compute Stack 
for the Cloud

Deep Samal, 
Staff Engineer, Performance Engineering

VMware/Broadcom/Omnissa



Introduction
• Staff Engineer

• EUC Vmware, Broadcom, Omnissa
• Performance Engineering Team, UEM

• PhD, ECE, Georgia Tech: 
• Advisors: Marilyn Wolf and Saibal Mukhopadhyay
• Closed Loop Perception for Resource Efficient 

Autonomous System 
• Autonomous Systems need to adapt to the 

dynamic environments they operate in.
• Control the complexity of autonomous 

perception systems (DNNs) dynamically 
according to risk/safety.

https://blogs.vmware.com/euc/2018/08/workspaceone-uem-vmworld.html



Infrastructure as a Service (IaaS)

ComputeStorageNetworking

Monitoring Security

• Components are loosely coupled
• Runtime Scalability
• Heterogenous Configurations

• Compute Optimized
• Memory Optimized
• …

• Farm of specialized Hardware 
• Bookkeeping

Application

Data

Runtime 
Environment

Operating System

Virtualization (Hypervisors)



Data Pipeline – Assembly Line for Information

• Data pipeline is the process of getting the data from various sources, processing it and 
finally delivering desired output to consumers
• Source: IoT devices, API calls, changes in databases etc.
• Process: data normalization, filtering, formatting
• Output: Analytics Applications, Monitoring, Data lake, another pipeline

• Different kinds of pipelines such as ETL, ELT etc.
• Architecture and components vary depending on desired use-cases such as batch-

processing vs real-time etc.
https://cloud.google.com/blog/topics/developers-practitioners/what-data-pipeline-architecture-should-i-use/



Virtualization

• Docker engine is responsible for isolation and management of containers.
• Application Processes inside containers run as native processes on the OS.
• Processes within a container are isolated from rest of the processes via Linux control groups
• How does the footprint on the hardware change due to containerized applications?

• Context switching
• Cache and Memory Access pattern

Hypervisor

Hardware

OS OS

Runtime

App

OS

Hypervisor

Hardware

OS

Runtime

App

Docker Engine

Runtime

App

OS

Runtime

App

Docker Engine

Runtime

App

Application developers 
build containers and do not 
worry about how to deploy

Virtual Machines Containers

Different Apps have 
different compute profile

We can 
have 
multiple 
application
s on same 
VM but 
there will 
be clash 
such as 
runtime 
library 
version etc.



Data Store (Database, Cache)

Credit: Dennis Matovu, Staff Engineer, Vmware/Broadcom/Omnissa

Indexes, caching, 
query execution

Table-1

Table-2

Table-3

Table-100

Traditional Relational Database

Disk

Memory

[key1] : [Value1]
[Key2] : [Value2]

…
[Key1M] : [Value1M]

Application

Cache

[Key]:[Value]

[Key]:[Value][Key]:[Value]

[Key]:[Value]

[Key]:[Value]

In-Memory Relational Database

• Caching is not a replacement of DB
• No persistence
• Relational Nature is not captured
• Unlike H/W Memory Management consistency is not automatically 

enforced
• Value field can be hash-tables, list, bit-maps etc.

• In-memory DB try to bridge the difference between DB and cache by creating 
the relationship on data stored in Key Value format

Source: Intel Solution Brief: Optimizing Microsoft SQL Server 
Databases to Accelerate Response Time and Throughput 

AOF

https://www.intel.com/content/dam/www/public/us/en/documents/solution-briefs/solution-kit-do-more-spend-less-faster-insights-solution-brief.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/solution-briefs/solution-kit-do-more-spend-less-faster-insights-solution-brief.pdf


Information Exchange

Producer

Producer

Consumer

Consumer
Producer

• Multiple type of messages are handled via topics.
• High throughput is achieved via Direct Memory Access

Broker Broker Broker

Message Message

Disk Network

Application

Kernel Space

User Space

Producer

Buffer

Direct 
Memory 
Access Consumer

Transaction logs

Replicate



Data Serialization Technique

• JSON – Javascript Object Notification
• Human readable serialization standard
• Key-Value format
• Demo- http://mpsoc-forum.org

• Protobuf – Protocol Buffer
• Binary format, not human readable
• Fast serialization
• Language agnostic but has to be compiled
• Think structures in C

• Data format has to be converted into code!

http://mpsoc-forum.org/


Network Stack – Traffic Management

• Virtualization of Network OSI Layers
• Low level structures are virtualized to give better control and observability
• Low level control for high- availability and infrastructure management
• High level N/W layer virtualization for application level control.
• Objective is to achieve high-availability

https://blogs.vmware.com/networkvirtualization/2019/04/how-istio-nsx-service-mesh-and-nsx-data-center-fit-together.html/



Network Stack - Protocol

• Transport layer is a bottleneck
• Security, reliability and speed are not mutually exclusive
• Control network at application layer

SYN

ACK

SYN-ACK

DATA

ACK

TCP

REQ

UDP

RESP

RESP

REQ

RESP

Connection-less

https://ably.com/topic/http-2-vs-http-3
http://austincorso.com/2019/12/29/http3-quic-tls13.html

http://austincorso.com/2019/12/29/http3-quic-tls13.html
http://austincorso.com/2019/12/29/http3-quic-tls13.html


eBPF – Bypassing the stack

• Can be placed on hardware to kernel to System calls to user-
space library in non-invasive manner

• Works on Containers 
• Data from eBPF hooks can be feed to AI based observability 

systems to know why error happened 
• Difference between monitoring and observability is 

important here
• Observability data is usually huge this a trade-off should be 

analyzed when deciding the amount of observability data 
customer/user can afford

Credit: Puran Chand, Staff Engineer, Vmware/Broadcom/Omnissa



eBPF – Bypassing the stack

• eBPF allows user level programs to run at kernel level
• Uses system call hooks
• Strict compilation rules and code isolation

• More efficient implementing user-level control for low-level 
operations such as file-system, network etc.

• Efficient when compared to agents or sidecars

Credit: Puran Chand, Staff Engineer, Vmware/Broadcom/Omnissa



Conclusion

• Evolution is in progress
• Workloads became compute heavy and low-level components of the 

computing stack became a limitation in scalability and high-
availability

• This led to virtualization of hardware, network stack, drivers etc.
• Control and monitoring was at infrastructure level

• Next generation workloads were highly dynamic
• Infrastructure level control of low-level stack was not enough
• Application-level control -> stack duplication
• Observability -> Intelligent control
• Degradation of performance and resource utilization

• Application-level control executed directly at low-level stack


	Slide 1: Evolution of Compute Stack for the Cloud
	Slide 2: Introduction
	Slide 3: Infrastructure as a Service (IaaS)
	Slide 4: Data Pipeline – Assembly Line for Information
	Slide 5: Virtualization
	Slide 6: Data Store (Database, Cache)
	Slide 7: Information Exchange
	Slide 8: Data Serialization Technique
	Slide 9: Network Stack – Traffic Management
	Slide 10: Network Stack - Protocol
	Slide 11: eBPF – Bypassing the stack
	Slide 12: eBPF – Bypassing the stack
	Slide 13: Conclusion

