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Infrastructure as a Service (laaS)

Components are loosely coupled
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Data Pipeline — Assembly Line for Information
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 Data pipelineis the process of getting the data from various sources, processing it and
finally delivering desired outputto consumers
* Source: loT devices, API calls, changes in databases etc.
* Process: data normalization, filtering, formatting
* Output: Analytics Applications, Monitoring, Data lake, another pipeline
* Different kinds of pipelines such as ETL, ELT etc.
* Architecture and components vary depending on desired use-cases such as batch-
processing vs real-time etc.

https://cloud.google.com/blog/topics/developers-practitioners/what-data-pipeline-architecture-should-i-use/



Virtualization
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* Dockerengine is responsible for isolation and management of containers.
* Application Processes inside containers run as native processes on the OS.
* Processes within a container are isolated from rest of the processes via Linux control groups

* How does the footprint on the hardware change due to containerized applications?
* Context switching

 Cache and Memory Access pattern



Data Store (Database, Cache)
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https://www.intel.com/content/dam/www/public/us/en/documents/solution-briefs/solution-kit-do-more-spend-less-faster-insights-solution-brief.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/solution-briefs/solution-kit-do-more-spend-less-faster-insights-solution-brief.pdf

Information Exchange
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* Multiple type of messages are handled via topics.
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Data Serialization Technique

JSON - Javascript Object Notification
* Human readable serialization standard
* Key-Value format
* Demo- http://mpsoc-forum.org

Protobuf — Protocol Buffer
* Binaryformat, not human readable
* Fastserialization
* Language agnostic but has to be compiled
* Think structuresin C

Data format has to be converted into code!
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http://mpsoc-forum.org/

Network Stack — Traffic Management
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Low level structures are virtualized to give better control and observability
Low level control for high- availability and infrastructure management

High level N/W layer virtualization for application level control.
Objective is to achieve high-availability

https://blogs.vmware.com/networkvirtualization/2019/04/how-istio-nsx-service-mesh-and-nsx-data-center-fit-together.html/
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Network Stack - Protocol
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* Transport layer is a bottleneck
e Security, reliability and speed are not mutually exclusive
* Control network at application layer
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http://austincorso.com/2019/12/29/http3-quic-tls13.html
http://austincorso.com/2019/12/29/http3-quic-tls13.html

eBPF - Bypassing the stack
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eBPF - Bypassing the stack

Sys‘tem architecture with eBPF
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Conclusion

Evolutionisin progress
Workloads became compute heavy and low-level components of the
computing stack became a limitation in scalability and high-
availability
This led to virtualization of hardware, network stack, drivers etc.
* Controland monitoring was at infrastructure level
Next generation workloads were highly dynamic
* Infrastructure level control of low-level stack was not enough
* Application-level control -> stack duplication
* Observability -> Intelligent control
* Degradation of performance and resource utilization
Application-level control executed directly at low-level stack
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