Evolution of Compute Stack
for the Cloud

Deep Samal,
Staff Engineer, Performance Engineering

VMware/Broadcom/Omnissa

Introduction

Workspace ONE |

* Staff Engineer

e EUC Vmware, Broadcom, Omnissa @@@ u u . bescadt :‘

° Pe I’fO rmance E ng| nee I’i ng Tea m , U E M Cloud Apps and Services Virtual Apps and Desktops

* PhD, ECE, Georgia Tech:

 Advisors: Marilyn Wolf and Saibal Mukhopadhyay : : :
* Closed Loop Perception for Resource Efficient
Autonomous System ’

* Autonomous Systems need to adaptto the @
dynamic environments they operate in. ——

* Controlthe complexity of autonomous

.l s

[¢]

perception systems (DNNs) dynamically
according to risk/safety.

https://blogs.vmware.com/euc/2018/08/workspaceone-uem-vmworld.html

Infrastructure as a Service (laaS)

Components are loosely coupled

Runtime Scalabitity A

Heterogenous Configurations /_ TTT)
* Compute Optimized Runtime
« Memory Optimized Environment

Farm of specialized Hardware ——======== ===
Bookkeeping Virtualization (Hypervisors)

Security

Monitoring

Networking Storage Compute

Data Pipeline — Assembly Line for Information
s N

i
|
:> Business
Intelligence
Data [:_> i
- Data Processes
Application <:> — ETL~ELT =~ ETLT — 4
Extract Transform Load Analytics
Data) Extract Load Transform —> &
Extract Transform Load Transform Data
Warehouse
:: Al /ML

A _4

 Data pipelineis the process of getting the data from various sources, processing it and
finally delivering desired outputto consumers
* Source: loT devices, API calls, changes in databases etc.
* Process: data normalization, filtering, formatting
* Output: Analytics Applications, Monitoring, Data lake, another pipeline
* Different kinds of pipelines such as ETL, ELT etc.
* Architecture and components vary depending on desired use-cases such as batch-
processing vs real-time etc.

https://cloud.google.com/blog/topics/developers-practitioners/what-data-pipeline-architecture-should-i-use/

Virtualization

Virtual Machines Containers L
r— === Application developers

We can build containers and do not
have worry about how to deploy
multiple

application

s on same] =

VM but Docker Engine Docker Engine Different Apps have
there will Os OS different compute profile
such as Hypervisor -

runtime Hypervisor

library Hardware

version etc. Hardware

* Dockerengine is responsible for isolation and management of containers.
* Application Processes inside containers run as native processes on the OS.
* Processes within a container are isolated from rest of the processes via Linux control groups

* How does the footprint on the hardware change due to containerized applications?
* Context switching

 Cache and Memory Access pattern

Data Store (Database, Cache)

/ [Key]:[Value]
Application revivaluel
Indexes, caching, v
Cache \
— [key1]: [Value1] PR
. || Table-3 [Key2]: [Value2]
Disk Table-1 4 In-Memory Relational Database
Table-2 Table-100 [Key1M] : [Value1M]
e : Configuration with Intel® Optane™ DC SSDs
Traditional Relational Database - with Intel® Memory Drive Technology
m COMPUTE MEMORY STORAGE
* Cachingis not areplacement of DB
e No persistence - - !l Zl
* Relational Nature is not captured e
« Unlike H/W Memory Management consistency is not automatically CPU DRAM — Intel’ Qptane SSb
enforced "
* Value field can be hash-tables, list, bit-maps etc. . . fl {l
* In-memory DB try to bridge the difference between DB and cache by creating e
the relationship on data stored in Key Value format CPU Bt '""Slcospstgne SSb
Source: Intel Solution Brief: Optimizing Micr ft L Serv
Dat: 10 A lerate R nse Timeand Thr hput

Credit: Dennis Matovu, Staff Engineer, Vmware/Broadcom/Omnissa

https://www.intel.com/content/dam/www/public/us/en/documents/solution-briefs/solution-kit-do-more-spend-less-faster-insights-solution-brief.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/solution-briefs/solution-kit-do-more-spend-less-faster-insights-solution-brief.pdf

Information Exchange

Producer ~

Producer

Message

Producer

Replicate

= || || =
[1

Broker Broker Broker

Message

Consumer

B

Transaction logs
A \ 4

]

Consumer

* Multiple type of messages are handled via topics.

* High throughputis achieved via Direct Memory Access

Producer
Application
User Space
Kernel Space
\ J—v Buffer
Direct ‘
Disk Memory Network
Access

Consumer

Data Serialization Technique

JSON - Javascript Object Notification
* Human readable serialization standard
* Key-Value format
* Demo- http://mpsoc-forum.org

Protobuf — Protocol Buffer
* Binaryformat, not human readable
* Fastserialization
* Language agnostic but has to be compiled
* Think structuresin C

Data format has to be converted into code!

Proto

Code Generator

Complie And Deploy

Message

Encoder

Message

Decoder

http://mpsoc-forum.org/

Network Stack — Traffic Management

I
NSX-DC | NSX-D
DPI L7 LB

Istio
Traffic

lanagement

Presentation

Session
T ¢ NSX-DC | NSX-DC
TRHE0ER DFW | L4LB
NSX-DC Logical NSX DC
Network Routing Observability

NSX-DC Logical
Switching

Physical Link

* Virtualization of Network OSI Layers

Config
(Pilot)

Control Plane

Data Plane

Pod

&

L7 Proxy
(Envoy)

Istio

Policy & Telemetry
(Mixer)

TLS Certs

(Citadel)

Pod

HTTP, gRPC, TCP with / without mTLS

Low level structures are virtualized to give better control and observability
Low level control for high- availability and infrastructure management

High level N/W layer virtualization for application level control.
Objective is to achieve high-availability

https://blogs.vmware.com/networkvirtualization/2019/04/how-istio-nsx-service-mesh-and-nsx-data-center-fit-together.html/

L7 Proxy
(Envoy)

Service
B

Network Stack - Protocol

TCP UDP
HTTP/Z HTT?/?
REQ J HTTPS } Avplication Layer { HTTPS \
%‘ > J i
TS Security Lave el
ACK RESP l } B { o | st
/ _ RESP |
ACK h TCP Transport Layer ‘ ,
- J hardware -
\Zi?'? &’ i detevwined
(kevwvel &
- > —>RESP (P (Wwtevnet Protocol) network) space
ACK
Connection-less
* Transport layer is a bottleneck
e Security, reliability and speed are not mutually exclusive
* Control network at application layer

HTTP/1.1 over Multiple TCPs

L L LT "= _
Server Tep2 Client
HPZ | mEmmmm
HTTP/2 over TCP
| Stream 1| |
Server | steam2 | | Client
QUIC over UDP
. | Stream1 [| - R | Client
erver ien
| Stream?2 | | Y s O O

[Data packet for a segment
I Lost packet
Wl Blocked packet

http://austincorso.com/2019/12/29/http3-quic-tls13.html
http://austincorso.com/2019/12/29/http3-quic-tls13.html

eBPF - Bypassing the stack

Virtual Maching

User Space

Can be placed on hardware to kernel to System calls to user- (s) User space lbravies
space library in non-invasive manner —
\”:“"/’ System Call Kermel |Space
Works on Containers o - ﬁ{;ﬂ
Data from eBPF hooks can be feed to Al based observability % .alzo;e.. Process Schedler
systems to know why error happened
* Difference between monitoring and observability is

important here

Observability data is usually huge this a trade-off should be
analyzed when deciding the amount of observability data Systen Cal Hppervisor

customer/user can afford
Fle System

Process Scheduler

Compute

<=

Disk

Credit: Puran Chand, Staff Engineer, Vmware/Broadcom/Omnissa

eBPF - Bypassing the stack

Sys‘tem architecture with eBPF

Operating s-{s‘cem

U‘SQJ‘SP‘M‘.C “PP' ications

* eBPF allows user level programs to run at kernel level
* Usessystem call hooks

e Strict compilation rules and code isolation ang cHice apgleations | [rotepad | | “Sore2ce
S | T $
* More efficient implementing user-level control for low-level v
operations such as file-system, network etc. systen call interface (ser) i mk:
* Efficientwhen compared to agents or sidecars t, copf progrom || Troffie Congestion

(—’ ! Y N

i k.grne,l i
Network driver | | File sys‘te,m driver (process scheduler

| —=x

o *

wdmr4 $ l,
NIC Hard-disk RAM cPU

Credit: Puran Chand, Staff Engineer, Vmware/Broadcom/Omnissa

Conclusion

Evolutionisin progress
Workloads became compute heavy and low-level components of the
computing stack became a limitation in scalability and high-
availability
This led to virtualization of hardware, network stack, drivers etc.
* Controland monitoring was at infrastructure level
Next generation workloads were highly dynamic
* Infrastructure level control of low-level stack was not enough
* Application-level control -> stack duplication
* Observability -> Intelligent control
* Degradation of performance and resource utilization
Application-level control executed directly at low-level stack

	Slide 1: Evolution of Compute Stack for the Cloud
	Slide 2: Introduction
	Slide 3: Infrastructure as a Service (IaaS)
	Slide 4: Data Pipeline – Assembly Line for Information
	Slide 5: Virtualization
	Slide 6: Data Store (Database, Cache)
	Slide 7: Information Exchange
	Slide 8: Data Serialization Technique
	Slide 9: Network Stack – Traffic Management
	Slide 10: Network Stack - Protocol
	Slide 11: eBPF – Bypassing the stack
	Slide 12: eBPF – Bypassing the stack
	Slide 13: Conclusion

