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Introduction
• Staff Engineer

• EUC Vmware, Broadcom, Omnissa
• Performance Engineering Team, UEM

• PhD, ECE, Georgia Tech: 
• Advisors: Marilyn Wolf and Saibal Mukhopadhyay
• Closed Loop Perception for Resource Efficient 

Autonomous System 
• Autonomous Systems need to adapt to the 

dynamic environments they operate in.
• Control the complexity of autonomous 

perception systems (DNNs) dynamically 
according to risk/safety.

https://blogs.vmware.com/euc/2018/08/workspaceone-uem-vmworld.html



Infrastructure as a Service (IaaS)

ComputeStorageNetworking

Monitoring Security

• Components are loosely coupled
• Runtime Scalability
• Heterogenous Configurations

• Compute Optimized
• Memory Optimized
• …

• Farm of specialized Hardware 
• Bookkeeping
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Data Pipeline – Assembly Line for Information

• Data pipeline is the process of getting the data from various sources, processing it and 
finally delivering desired output to consumers
• Source: IoT devices, API calls, changes in databases etc.
• Process: data normalization, filtering, formatting
• Output: Analytics Applications, Monitoring, Data lake, another pipeline

• Different kinds of pipelines such as ETL, ELT etc.
• Architecture and components vary depending on desired use-cases such as batch-

processing vs real-time etc.
https://cloud.google.com/blog/topics/developers-practitioners/what-data-pipeline-architecture-should-i-use/



Virtualization

• Docker engine is responsible for isolation and management of containers.
• Application Processes inside containers run as native processes on the OS.
• Processes within a container are isolated from rest of the processes via Linux control groups
• How does the footprint on the hardware change due to containerized applications?

• Context switching
• Cache and Memory Access pattern

Hypervisor
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Application developers 
build containers and do not 
worry about how to deploy

Virtual Machines Containers

Different Apps have 
different compute profile

We can 
have 
multiple 
application
s on same 
VM but 
there will 
be clash 
such as 
runtime 
library 
version etc.



Data Store (Database, Cache)

Credit: Dennis Matovu, Staff Engineer, Vmware/Broadcom/Omnissa

Indexes, caching, 
query execution

Table-1
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Table-100

Traditional Relational Database

Disk

Memory

[key1] : [Value1]
[Key2] : [Value2]

…
[Key1M] : [Value1M]

Application

Cache

[Key]:[Value]

[Key]:[Value][Key]:[Value]

[Key]:[Value]

[Key]:[Value]

In-Memory Relational Database

• Caching is not a replacement of DB
• No persistence
• Relational Nature is not captured
• Unlike H/W Memory Management consistency is not automatically 

enforced
• Value field can be hash-tables, list, bit-maps etc.

• In-memory DB try to bridge the difference between DB and cache by creating 
the relationship on data stored in Key Value format

Source: Intel Solution Brief: Optimizing Microsoft SQL Server 
Databases to Accelerate Response Time and Throughput 

AOF

https://www.intel.com/content/dam/www/public/us/en/documents/solution-briefs/solution-kit-do-more-spend-less-faster-insights-solution-brief.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/solution-briefs/solution-kit-do-more-spend-less-faster-insights-solution-brief.pdf


Information Exchange
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• Multiple type of messages are handled via topics.
• High throughput is achieved via Direct Memory Access
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Data Serialization Technique

• JSON – Javascript Object Notification
• Human readable serialization standard
• Key-Value format
• Demo- http://mpsoc-forum.org

• Protobuf – Protocol Buffer
• Binary format, not human readable
• Fast serialization
• Language agnostic but has to be compiled
• Think structures in C

• Data format has to be converted into code!

http://mpsoc-forum.org/


Network Stack – Traffic Management

• Virtualization of Network OSI Layers
• Low level structures are virtualized to give better control and observability
• Low level control for high- availability and infrastructure management
• High level N/W layer virtualization for application level control.
• Objective is to achieve high-availability

https://blogs.vmware.com/networkvirtualization/2019/04/how-istio-nsx-service-mesh-and-nsx-data-center-fit-together.html/



Network Stack - Protocol

• Transport layer is a bottleneck
• Security, reliability and speed are not mutually exclusive
• Control network at application layer
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Connection-less

https://ably.com/topic/http-2-vs-http-3
http://austincorso.com/2019/12/29/http3-quic-tls13.html

http://austincorso.com/2019/12/29/http3-quic-tls13.html
http://austincorso.com/2019/12/29/http3-quic-tls13.html


eBPF – Bypassing the stack

• Can be placed on hardware to kernel to System calls to user-
space library in non-invasive manner

• Works on Containers 
• Data from eBPF hooks can be feed to AI based observability 

systems to know why error happened 
• Difference between monitoring and observability is 

important here
• Observability data is usually huge this a trade-off should be 

analyzed when deciding the amount of observability data 
customer/user can afford

Credit: Puran Chand, Staff Engineer, Vmware/Broadcom/Omnissa



eBPF – Bypassing the stack

• eBPF allows user level programs to run at kernel level
• Uses system call hooks
• Strict compilation rules and code isolation

• More efficient implementing user-level control for low-level 
operations such as file-system, network etc.

• Efficient when compared to agents or sidecars

Credit: Puran Chand, Staff Engineer, Vmware/Broadcom/Omnissa



Conclusion

• Evolution is in progress
• Workloads became compute heavy and low-level components of the 

computing stack became a limitation in scalability and high-
availability

• This led to virtualization of hardware, network stack, drivers etc.
• Control and monitoring was at infrastructure level

• Next generation workloads were highly dynamic
• Infrastructure level control of low-level stack was not enough
• Application-level control -> stack duplication
• Observability -> Intelligent control
• Degradation of performance and resource utilization

• Application-level control executed directly at low-level stack
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