EEEEEEEE

Distributing Memory Bank
Accesses in Many-Core
Architectures:

Hardware approaches

Arthur Vianes and Frédéric Rousseau
Kalray, France
Univ. Grenoble Alpes, CNRS, Grenoble INP, TIMA, France

O KaLrAY N\~
ACCELERATE YOUR DATA MPSOC’24

« Computing power implies a huge pressure on the memory architecture

* A cluster-based many-core architecture: example of the MPPA with
local memory split in 16 memory banks

CTSEET et
* Processing Elements \IPPA /¢ INoc||DMA | HEHRM
« Memory Banks R — | -
3 % O o Ol CI/ . | Interconnect CH PEO
I e S 2 AR B
C—CrHCHC =1 pE1
P | [_
Ideal behavior: lcHeHeHc g g;',j | 9;'?
- At each cycle, the memory bank is | | RS ~I=| |2
perfectly distributed and collision-free cdecHeHagil - =
- An access to the same memory bank :~— —' — — PELS

never happens in the Same CyCIe it esiseeessassarssesasesssssssasaaaaanaananns -

- In case of collision, only one memory bank access is performed,
delaying all the other accesses

4 GRENOBLE

TiMA INP

* Distributed computations and memory accesses: focus on
stride access
» Typically appears in a majority of high-performance computing scenarios

int32_t array[1024];

i=0; i=1 i=3;
for(i=0; ... for(i=0;... for (i=0;
..=array[i+16xj]... ..=array[i+16xj]... ..=array[i+16xj]...
Core O Corel Core 2 Core 3
. Interconnect
Use of memory address bits

4 banks, 1kB each | | | |

. @0 @1024 @2048 @3072
Consecutive address space Bank 0 Bank 1 Bank 2 ‘Bank 3
@1023 @2047 @3071 .

Stride size of 16 words (64 bytes) -_

Array index array[0] array[16] array[32] array[48]

. Mem. add @0 @64 @128 @192
Stride access pattern: addresses em. acaress
Mem. bank 0 0 0 0
spaced by a constant amount — e

The 4 cores access the same bank

4 GRENOBLE

TiIMA INP

* Interleaving means slicing up the address range of the memory
and then distributing it among the memory banks

int32_t array[1024];

j=0; i=1 j=3;
for(i=0; .. for(i=0; ... for (i =0;
..=array[i+16xj]... ..=array[i+16xj]... ..=array[i+16xj] ...
Core O Core 1 Core 2 Core 3
Interconnect
Use of memory address bits s o6t a1 TR T 1) G
4 banks, 1kB each, inter|eaving @ 256 - @319 @320 - @383 @384 - @447 @448 - @511
Bank 0 Bank 1 Bank 2 Bank 3

But:
Better to define a slice size close to -

what the core is capable to perform =0 Array index array[0] array[16] array[32] array[48]

at once (same size as the L1 cache Mem. address @0 @64 @128 @192

|ine) Mem. bank 0 1 2 3
‘N//'

The 4 cores access different banks

4 GRENOBLE

TiIMA INP

« Software solutions exist, but these methods require from the
programmers to respect strict constraints:
A specific array size choice
« Static memory assignment (ex: SAGE from C. Chavet and all — 2010)
« Strong assumption on the number of memory banks

Example of padding: from a 16 bytes stride to 17 bytes

Core 0 Core 1 Core 2 Core 3 (adding an unused element — column — in a matrix)
| I | I
I Interconnect |
v v v 2 Bank Bank
01 2 3 01 2 3
o - N ™ 0|e 0 e
< < = < Address 16 | e Address 17 ¢
© @ © <s 32 | e 34 .
(11] (11] om m 48 | e 51 .
total 4 0 0 O total 1 1 1 1

. A 4-banks architecture, 1-byte words, with a 16-bytes stride access A 4 bank architecture, 1-byte words, with a 17-bytes stride
pattern

4 GRENOBLE

TiMA INP

« Hardware solutions may provide solution that release these
constraints from the programmer side

MOD or PRIM

@data — (hash fct) — Bank index

HW component

« 2 approaches
* Prime modulus indexing (MOD)
* Interleaving schemes (PRIM)

* The main idea is to avoid common factors between number of banks

and the stride size

» The padding (SW approach) modifies the stride size
* Prime Modulus Indexing is a HW solution: modification of the number of banks

» Choising as number of banks a prime number

Number of banks: 5
Stride of 16: no collision (except co-prime of 5)

Bank ‘ Bank
0 1 2 3 4 01 2 3 4
N o~
Q;)) 1 2 3 4 o(e
5 6 7 8 9 16 .
10 11 12 13 14 Address .
48 ®

15 116) 17 18 19

: total 1 1 1 1 0
Distribution of addresses across 5 banks and distribution of 4 stride
accesses of 16 within a 5 bank system

Bank =16 mod 5 =1
Index=16/5=3

4 GRENOBLE

TiMA INP

Bank = @data mod Npank
Index = @data / Ny«

HW implementation:

- optimized way for some specific numbers as
described in (de Dinechin 1991; Diamond et al. 2014)
- euclidean division is not needed when the number
of banks is prime or simply odd (Seznec 2015)

* PRIM Pseudo-Randomly Interleaved Memory method

* Proposed by B.R. Rau in 1991

« Based on polynomial
 HW implementation based on XOR Bank

 Perfect distribution for 2" stride access patterns 0o 1 2 3
0 1 2 3

7 6 5 4

9 8 11 10

Example: PRIM 7 (111,) corresponds to P(x) = x* + x + 1
In which bank is the data at address 13 ? Bank
13 = 1101, corresponds to A(x) = x3 + x? + 1

Address

0
Polynomial division: bank = A(x) + P(x) g .
12

X3+ X2 +1[X24+X+1
X+ X*+ X X total 1 1 1 1
R(X) = X +1
Example of PRIM7 allocation in

R(X) = X + 1 then the bankis 11, =3 a 4 banks arc_hitecture, |
4 memory accesses with a 4-bytes stride

4 GRENOBLE

TiMA INP

@ kALRAY
 Simulator implementation E YOUR DATA

» The simulation model is modular and evolutive (exploration of memory
architecture, hash functions for memory bank interveaving)

» A set of simulation components: memory banks, computational cores, arbiters

Details of a 4 cores —4 memory banks architecture

mnq N9 ins 1Ny

I I I I Scrambler
Cores Cuj |Gz O3] | SCT1 || 5CT2 || 5CT'3 || 8CT4 It scrambles the access to the
L ! L L mem. bank
Interconnect E%X
Memory l | ! L
banks Bi| |Bsy| |Bs| | Bs| ‘”“fl W’f? C”I’i% O”IM Arbiter

outi outy outs outy

Target architectures: 16 cores — 16 (or 17) memory banks | i i i u |
Interleaving of 32 bytes (cache line size) .
Added FIFOs between cores and memory banks =
FIFOs help to smooth out collisions when they are w|_Jaol] [
only occasional | sanko | [st | [mankz | | ancs |

4 GRENOBLE

TiMA INP

 Target architecture: 16 cores and 16 memory banks

 Pathological behaviors with peak-down pattern on stride sizes of the powers of
two and their multiples
» Example: the stride of 512 bytes indicates only 1 access per cycle for the 16
requests — all cores try to access the same bank
» Core 0 -> array[0] - @0 in bank O,
 Core 1->array[512] - @1 in bank 0 ((512 + 32) + 16 = 1; (512 + 32) mod16 = 0),
- Core 2 -> array[1024] - @2 in bank 0 ((1024 + 32) = 16 = 2; (1024 + 32) mod16 = 0),

» Good performance (with FIFO) for strides which are not powers of two

16 [T T I | I
14 |
o 12 A A o Y A L R Y A Y A AV Y
S
oo o
(0]
o) 8 I
(&)
2 6 | | | |
© \ ! | |
; T Mod 16 with fifos -
Mod 16 without fifos
T random with fifos -------- .
I ! | | randorp without fifols ————————
0

0 128 256 384 512 640 768 896 1024
Stride size

EEEEEEEE

Target architecture: 16 cores and 17 memory banks (prime number)

We are looking to get good performance for strides of powers of two !

Pathological behaviors with peak-down pattern aligned on multiples of 17 x 2"
« Example: the stride of 544 bytes indicates only 1 access per cycle for the 16 requested — all cores try
to access the same bank
* Core 0 -> array[0] - @0 in bank 0,
+ Core 1->array[544] - @1 in bank 0 ((544 + 32) + 17 = 1; (544 + 32) mod17 = 0),
* Core 2 -> array[1088] - @2 in bank 0 ((1088 + 32) + 17 = 2; (1088 + 32) mod17 = 0),

Less pathological accesses (and never for strides of powers of two)

16
14
o 12F 7
S
<\.> 10 - . ..
)]
s 8
(&]
2 6
= ‘
S 4 | Mot 17 with fifos
\ Mod 17 without fifos
2 F random with fifos -------- .
random without fifos --------
0 | | | | | |
0 136 272 408 544 680 816 952 1088

Stride size

4 GRENOBLE

TiMA INP

 Target architecture: 16 cores and 16 memory banks

* Pseudo-Randomly Interleaved Memory indexed
* PRIM 47

* In average, worse than MOD16 and MOD17, but it does not suffer
from pathological accesses, all strides have approximately the same
performance

» Very good performance for strides powers of 2 (128, 256, 512)

16 I I I I I I
14
o) 1o 7V TN WY VNYENATT TV AN IAA T VW YIS TN TA N T |
S
S 10 (A N N | B SR y
Qo
o 8 Ir .
(&)
2 6 -
©
< 4 | PRIM47 with fifos =
PRIMA47 without fifos
2 r random with fifos -------- .
random without fifos --------
0 | | | | | |
0 128 256 384 512 640 768 896 1024

Stride size

4 GRENOBLE

TiMA INP

* Previous approaches are based on predictable access patterns

» Approaches for random access patterns
« Add of memory banks
* It reduces collisions but has a HW cost

 Access re-ordering (add of a re-ordering buffer — equ to load buffer)
* Re-ordering access when collisions occur, but has an impact on memory consistency
* Incresing buffer size allows to gain in performance, but it is limited by mem. bank collisions

« Both compatible with interleaving scheme or hash function distribution

16 \ \ \ \ \ \ \ 16
14 + - 14
12 — 12
> Better results when all approaches
=0 0 il B are combined
- 8 = — 8
g

N

16 18 20 22 24 26 28 30 32
Number of banks

4 GRENOBLE

TiMA INP

 There is no universal solution

« The comparative results of these methods do not show an advantage
for a method on all criteria: complexity / effectiveness / usability

« Hash method such as PRIM or MOD should be combined with other
architectural changes, such as adding more memory banks or
reordering memory accesses for a more general use

EEEEEEEE

Distributing Memory Bank
Accesses in Many-Core
Architectures:

Hardware approaches

Arthur Vianes and Frédéric Rousseau
Kalray, France
Univ. Grenoble Alpes, CNRS, Grenoble INP, TIMA, France

O KaLrAY N\~
ACCELERATE YOUR DATA MPSOC’24

