
Distributing Memory Bank
Accesses in Many-Core

Architectures:
Hardware approaches

Arthur Vianes and Frédéric Rousseau
Kalray, France

Univ. Grenoble Alpes, CNRS, Grenoble INP, TIMA, France

• Computing power implies a huge pressure on the memory architecture

• A cluster-based many-core architecture: example of the MPPA with
local memory split in 16 memory banks

• Processing Elements
• Memory Banks
• . . .

2

Introduction

DMANoC

L
1 PE0

L
1 PE1

L
1 PE15

...

B
an

k
0

B
an

k
1

· · ·

B
an

k
15

Interconnect

RM

L
1

Cluster

Ideal behavior:
- At each cycle, the memory bank is
perfectly distributed and collision-free
- An access to the same memory bank
never happens in the same cycle
- In case of collision, only one memory bank access is performed,
delaying all the other accesses

• Distributed computations and memory accesses: focus on
stride access

• Typically appears in a majority of high-performance computing scenarios

MPSoC 2023 – Frédéric Rousseau – TIMA Lab 3

Memory bank saturation thru an example

Interconnect

Core 0 Core 1 Core 2 Core 3

Bank 0 Bank 1 Bank 2 Bank 4

j = 0;
for (i = 0; …
… = array[i + 16 x j] ...

j = 1;
for (i = 0; …
… = array[i + 16 x j] …

j = 3;
for (i = 0; …
… = array[i + 16 x j] …

@0

@1023

@1024

@2047

@2048

@3071

@3072

@. . .

int32_t array[1024];

Core 3Core 2Core 1Core 0
array[48]array[32]array[16]array[0]Array indexi = 0

@192@128@64@0Mem. address

0000Mem. bank

The 4 cores access the same bank

Use of memory address bits
4 banks, 1kB each
Consecutive address space

Stride size of 16 words (64 bytes)

Stride access pattern: addresses
spaced by a constant amount

3

• Interleaving means slicing up the address range of the memory
and then distributing it among the memory banks

MPSoC 2024 – Frédéric Rousseau – TIMA Lab 4

Is interleaving a solution ?

Bank 0 Bank 1 Bank 2 Bank 4

. . . .

@0 - @63
@ 256 - @319
. . .

@64 - @127
@320 - @383
. . .

@128 - @191
@384 - @447
. . .

@192 - @255
@448 - @511
. . .

Interconnect

Core 0 Core 1 Core 2 Core 3

j = 0;
for (i = 0; …
… = array[i + 16 x j] ...

j = 1;
for (i = 0; …
… = array[i + 16 x j] …

j = 3;
for (i = 0; …
… = array[i + 16 x j] …

int32_t array[1024];

Core 3Core 2Core 1Core 0
array[48]array[32]array[16]array[0]Array indexi = 0

@192@128@64@0Mem. address

3210Mem. bank

The 4 cores access different banks

Use of memory address bits
4 banks, 1kB each, interleaving

But:
- Better to define a slice size close to
what the core is capable to perform
at once (same size as the L1 cache
line)

3

• Software solutions exist, but these methods require from the
programmers to respect strict constraints:

• A specific array size choice
• Static memory assignment (ex: SAGE from C. Chavet and all – 2010)
• Strong assumption on the number of memory banks

MPSoC 2024 – Frédéric Rousseau – TIMA Lab 5

How to manage memory bank conflits ?

Example of padding: from a 16 bytes stride to 17 bytes
(adding an unused element – column – in a matrix)

• Hardware solutions may provide solution that release these
constraints from the programmer side

• 2 approaches
• Prime modulus indexing (MOD)
• Interleaving schemes (PRIM)

MPSoC 2024 – Frédéric Rousseau – TIMA Lab 6

Towards Hardware Solutions

@data
MOD or PRIM

(hash fct)

HW component

Bank index

• The main idea is to avoid common factors between number of banks
and the stride size

• The padding (SW approach) modifies the stride size
• Prime Modulus Indexing is a HW solution: modification of the number of banks

• Choising as number of banks a prime number

MPSoC 2024 – Frédéric Rousseau – TIMA Lab 7

Prime Modulus Indexing (MOD)

Number of banks: 5
Stride of 16: no collision (except co-prime of 5)

Bank = @data mod Nbank
Index = @data / Nbank

Bank = 16 mod 5 = 1
Index = 16 / 5 = 3

HW implementation:
- optimized way for some specific numbers as
described in (de Dinechin 1991; Diamond et al. 2014)
- euclidean division is not needed when the number
of banks is prime or simply odd (Seznec 2015)

• PRIM Pseudo-Randomly Interleaved Memory method
• Proposed by B.R. Rau in 1991
• Based on polynomial
• HW implementation based on XOR
• Perfect distribution for 2n stride access patterns

MPSoC 2024 – Frédéric Rousseau – TIMA Lab 8

Interleaving Scheme (PRIM)

Example: PRIM 7 (1112) corresponds to 𝑃 𝑥 = 𝑥! + 𝑥 + 1
In which bank is the data at address 13 ?
 13 = 11012 corresponds to A 𝑥 = 𝑥" + 𝑥! + 1

Polynomial division: 𝑏𝑎𝑛𝑘 = 	𝐴(𝑥) ÷ 𝑃(𝑥)

Example of PRIM7 allocation in
a 4 banks architecture,

4 memory accesses with a 4-bytes stride
𝑅 𝑋 = 𝑋 + 1 then the bank is 112 = 3

• Simulator implementation
• The simulation model is modular and evolutive (exploration of memory

architecture, hash functions for memory bank interveaving)
• A set of simulation components: memory banks, computational cores, arbiters

MPSoC 2024 – Frédéric Rousseau – TIMA Lab 9

Implementation on the Kalray MPPA Cluster

scr1

arb1

in1

out1

scr2

arb2

in2

out2

scr3

arb3

in3

out3

scr4

arb4

in4

out4

Interconnect

C1

B1

C2

B2

C3

B3

C4

B4

Cores

Memory
banks

Scrambler
It scrambles the access to the
mem. bank

Arbiter

Details of a 4 cores – 4 memory banks architecture

Target architectures: 16 cores – 16 (or 17) memory banks
Interleaving of 32 bytes (cache line size)
Added FIFOs between cores and memory banks

FIFOs help to smooth out collisions when they are
only occasional

• Target architecture: 16 cores and 16 memory banks
• Pathological behaviors with peak-down pattern on stride sizes of the powers of

two and their multiples
• Example: the stride of 512 bytes indicates only 1 access per cycle for the 16

requests – all cores try to access the same bank
• Core 0 -> array[0] - @0 in bank 0 ,
• Core 1 -> array[512] - @1 in bank 0 ((512 ÷ 32) ÷ 16 = 1; (512 ÷ 32) mod16 = 0),
• Core 2 -> array[1024] - @2 in bank 0 ((1024 ÷ 32) ÷ 16 = 2; (1024 ÷ 32) mod16 = 0),
• . . .

• Good performance (with FIFO) for strides which are not powers of two

MPSoC 2024 – Frédéric Rousseau – TIMA Lab 10

MOD16 indexing

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0 128 256 384 512 640 768 896 1024

ac
tiv

e
co

re
 /

cy
cl

e

Stride size

Mod 16 with fifos
Mod 16 without fifos

random with fifos
random without fifos

• Target architecture: 16 cores and 17 memory banks (prime number)

• We are looking to get good performance for strides of powers of two !
• Pathological behaviors with peak-down pattern aligned on multiples of 17 x 2n

• Example: the stride of 544 bytes indicates only 1 access per cycle for the 16 requested – all cores try
to access the same bank

• Core 0 -> array[0] - @0 in bank 0,
• Core 1 -> array[544] - @1 in bank 0 ((544 ÷ 32) ÷ 17 = 1; (544 ÷ 32) mod17 = 0),
• Core 2 -> array[1088] - @2 in bank 0 ((1088 ÷ 32) ÷ 17 = 2; (1088 ÷ 32) mod17 = 0),
• . . .

• Less pathological accesses (and never for strides of powers of two)

MPSoC 2024 – Frédéric Rousseau – TIMA Lab 11

MOD17 indexing

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0 136 272 408 544 680 816 952 1088

ac
tiv

e
co

re
 /

cy
cl

e

Stride size

Mod 17 with fifos
Mod 17 without fifos

random with fifos
random without fifos

• Target architecture: 16 cores and 16 memory banks
• Pseudo-Randomly Interleaved Memory indexed

• PRIM 47
• In average, worse than MOD16 and MOD17, but it does not suffer

from pathological accesses, all strides have approximately the same
performance

• Very good performance for strides powers of 2 (128, 256, 512)

MPSoC 2024 – Frédéric Rousseau – TIMA Lab 12

PRIM47 indexing

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0 128 256 384 512 640 768 896 1024

Ac
tiv

e
co

re
 /

cy
cl

e

Stride size

PRIM47 with fifos
PRIM47 without fifos

random with fifos
random without fifos

• Previous approaches are based on predictable access patterns

• Approaches for random access patterns
• Add of memory banks

• It reduces collisions but has a HW cost
• Access re-ordering (add of a re-ordering buffer – equ to load buffer)

• Re-ordering access when collisions occur, but has an impact on memory consistency
• Incresing buffer size allows to gain in performance, but it is limited by mem. bank collisions

• Both compatible with interleaving scheme or hash function distribution

MPSoC 2024 – Frédéric Rousseau – TIMA Lab 13

What about random access patterns ?

 16 18 20 22 24 26 28 30 32

Number of banks

 2

 4

 6

 8

 10

 12

 14

 16

B
u
ff

e
r

ca
p
a
ci

ty

 2

 4

 6

 8

 10

 12

 14

 16

Better results when all approaches
are combined

• There is no universal solution
• The comparative results of these methods do not show an advantage

for a method on all criteria: complexity / effectiveness / usability

• Hash method such as PRIM or MOD should be combined with other
architectural changes, such as adding more memory banks or
reordering memory accesses for a more general use

MPSoC 2024 – Frédéric Rousseau – TIMA Lab 14

Analyse and conclusion

Distributing Memory Bank
Accesses in Many-Core

Architectures:
Hardware approaches

Arthur Vianes and Frédéric Rousseau
Kalray, France

Univ. Grenoble Alpes, CNRS, Grenoble INP, TIMA, France

