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• Computing power implies a huge pressure on the memory architecture

• A cluster-based many-core architecture: example of the MPPA with 
local memory split in 16 memory banks

• Processing Elements
• Memory Banks
• . . .
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Ideal behavior:
- At each cycle, the memory bank is 
perfectly distributed and collision-free
- An access to the same memory bank 
never happens in the same cycle
- In case of collision, only one memory bank access is performed, 
delaying all the other accesses



• Distributed computations and memory accesses: focus on 
stride access

• Typically appears in a majority of high-performance computing scenarios
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Memory bank saturation thru an example

Interconnect

Core 0 Core 1 Core 2 Core 3

Bank 0 Bank 1 Bank 2 Bank 4

j = 0;
for (i = 0; …
… = array[ i + 16 x j ] ...

j = 1;
for (i = 0; …
… = array[ i + 16 x j ] … . . . .

j = 3;
for (i = 0; …
… = array[ i + 16 x j ] …

@0

@1023

@1024

@2047

@2048

@3071

@3072

@. . .

int32_t  array[1024];

Core 3Core 2Core 1Core 0
array[48]array[32]array[16]array[0]Array indexi = 0

@192@128@64@0Mem. address

0000Mem. bank

The 4 cores access the same bank

Use of memory address bits
4 banks, 1kB each
Consecutive address space

Stride size of 16 words (64 bytes)

Stride access pattern: addresses
spaced by a constant amount 
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• Interleaving means slicing up the address range of the memory 
and then distributing it among the memory banks 
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Is interleaving a solution ?

Bank 0 Bank 1 Bank 2 Bank 4

. . . .

@0 - @63
@ 256 - @319
. . . 

@64 - @127
@320 - @383
. . .

@128 - @191
@384 - @447
. . .

@192 - @255
@448 - @511 
. . .

Interconnect

Core 0 Core 1 Core 2 Core 3

j = 0;
for (i = 0; …
… = array[ i + 16 x j ] ...

j = 1;
for (i = 0; …
… = array[ i + 16 x j ] …

j = 3;
for (i = 0; …
… = array[ i + 16 x j ] …

int32_t  array[1024];

Core 3Core 2Core 1Core 0
array[48]array[32]array[16]array[0]Array indexi = 0

@192@128@64@0Mem. address

3210Mem. bank

The 4 cores access different banks

Use of memory address bits
4 banks, 1kB each, interleaving

But:
- Better to define a slice size close to
what the core is capable to perform 
at once (same size as the L1 cache 
line)
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• Software solutions exist, but these methods require from the 
programmers to respect strict constraints:

• A specific array size choice
• Static memory assignment (ex: SAGE from C. Chavet and all – 2010)
• Strong assumption on the number of memory banks
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How to manage memory bank conflits ?

Example of padding: from a 16 bytes stride to 17 bytes 
(adding an unused element – column – in a matrix)



• Hardware solutions may provide solution that release these 
constraints from the programmer side

• 2 approaches
• Prime modulus indexing (MOD)
• Interleaving schemes (PRIM)
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Towards Hardware Solutions

@data
MOD or PRIM

(hash fct)

HW component

Bank index



• The main idea is to avoid common factors between number of banks 
and the stride size

• The padding (SW approach) modifies the stride size
• Prime Modulus Indexing is a HW solution: modification of the number of banks

• Choising as number of banks a prime number
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Prime Modulus Indexing (MOD)

Number of banks: 5
Stride of 16: no collision (except co-prime of 5)

Bank = @data mod Nbank
Index = @data / Nbank

Bank = 16 mod 5 = 1
Index = 16 / 5 = 3

HW implementation:
- optimized way for some specific numbers as 
described in (de Dinechin 1991; Diamond et al. 2014) 
- euclidean division is not needed when the number 
of banks is prime or simply odd (Seznec 2015)



• PRIM Pseudo-Randomly Interleaved Memory method
• Proposed by B.R. Rau in 1991
• Based on polynomial
• HW implementation based on XOR
• Perfect distribution for 2n stride access patterns
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Interleaving Scheme (PRIM)

Example: PRIM 7 (1112) corresponds to 𝑃 𝑥 = 𝑥! + 𝑥 + 1
In which bank is the data at address 13 ? 
 13 = 11012 corresponds to A 𝑥 = 𝑥" + 𝑥! + 1

Polynomial division: 𝑏𝑎𝑛𝑘 = 	𝐴(𝑥) ÷ 𝑃(𝑥)

Example of PRIM7 allocation in 
a 4 banks architecture,

4 memory accesses with a 4-bytes stride
𝑅 𝑋 = 𝑋 + 1 then the bank is 112 = 3



• Simulator implementation
• The simulation model is modular and evolutive (exploration of memory 

architecture, hash functions for memory bank interveaving)
• A set of simulation components: memory banks, computational cores, arbiters
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Implementation on the Kalray MPPA Cluster 
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Scrambler
It scrambles the access to the 
mem. bank

Arbiter

Details of a 4 cores – 4 memory banks architecture

Target architectures: 16 cores – 16 (or 17) memory banks
Interleaving of 32 bytes (cache line size)
Added FIFOs between cores and memory banks

FIFOs help to smooth out collisions when they are 
only occasional 



• Target architecture: 16 cores and 16 memory banks
• Pathological behaviors with peak-down pattern on stride sizes of the powers of 

two and their multiples
• Example: the stride of 512 bytes indicates only 1 access per cycle for the 16 

requests – all cores try to access the same bank 
• Core 0 -> array[0] - @0 in bank 0 , 
• Core 1 -> array[512] - @1 in bank 0 ((512 ÷ 32) ÷ 16 = 1; (512 ÷ 32) mod16 = 0), 
• Core 2 -> array[1024] - @2 in bank 0 ((1024 ÷ 32) ÷ 16 = 2; (1024 ÷ 32) mod16 = 0), 
• . . . 

• Good performance (with FIFO) for strides which are not powers of two
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MOD16 indexing
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• Target architecture: 16 cores and 17 memory banks (prime number)

• We are looking to get good performance for strides of powers of two !
• Pathological behaviors with peak-down pattern aligned on multiples of 17 x 2n 

• Example: the stride of 544 bytes indicates only 1 access per cycle for the 16 requested – all cores try 
to access the same bank 

• Core 0 -> array[0] - @0 in bank 0, 
• Core 1 -> array[544] - @1 in bank 0 ((544 ÷ 32) ÷ 17 = 1; (544 ÷ 32) mod17 = 0), 
• Core 2 -> array[1088] - @2 in bank 0 ((1088 ÷ 32) ÷ 17 = 2; (1088 ÷ 32) mod17 = 0), 
• . . . 

• Less pathological accesses (and never for strides of powers of two)
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MOD17 indexing
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• Target architecture: 16 cores and 16 memory banks
• Pseudo-Randomly Interleaved Memory indexed

• PRIM 47
• In average, worse than MOD16 and MOD17, but it does not suffer 

from pathological accesses, all strides have approximately the same 
performance

• Very good performance for strides powers of 2 (128, 256, 512)
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PRIM47 indexing
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• Previous approaches are based on predictable access patterns

• Approaches for random access patterns
• Add of memory banks

• It reduces collisions but has a HW cost
• Access re-ordering (add of a re-ordering buffer – equ to load buffer)

• Re-ordering access when collisions occur, but has an impact on memory consistency
• Incresing buffer size allows to gain in performance, but it is limited by mem. bank collisions

• Both compatible with interleaving scheme or hash function distribution
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What about random access patterns ?
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Better results when all approaches
are combined



• There is no universal solution
• The comparative results of these methods do not show an advantage 

for a method on all criteria: complexity / effectiveness / usability 

• Hash method such as PRIM or MOD should be combined with other 
architectural changes, such as adding more memory banks or 
reordering memory accesses for a more general use
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Analyse and conclusion
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