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On the ZuKiMo Chip AI Accelerator 
for Automotive

Gerhard Fettweis (presenting) – Vodafone Chair Professor @ TU Dresden; Scientific Director & CEO @ Barkhausen Institut
Major contributors: Simon Friedrich, Robert Wittig, Emil Matus, and more
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Platform Chips – Some of Our MPSoC Examples

1997: M3 DSP 2006: Samira 2004: Tomahawk 1 2008: Tomahawk 2 

Router0

LPDDR2 Memory Interface

PE

PE

PE

PE

CM

SerDes I/O

Router1

Serial
Link

LPDDR2 Memory Interface

2012: Atlas 2014: Tomahawk 3 2016: Tomahawk 4

1997 M3-DSP M. Hosemann, et al., “Applications for the Highly Parallel Mobile Multimedia Modem M3 DSP,” in Proceedings of EUROMICRO Conference (Euromicro 2002), Dortmund, Germany
2004 Tomahawk1 P. Robelly, et al., “Implementation of Recursive Digital Filters into Vector SIMD DSP Architectures.,” Proceedings of IEEE ICASSP 2004, Montreal, Canada, May 2004
2006 SAMIRA E. Matus, et al. “A GFLOPS Vector-DSP for Broadband Wireless Applications,” in Proceedings of IEEE Custom Integrated Circuits Conference (CICC 2006), San Jose, USA, Sep 2006
2008 Tomahawk2 T. Limberg, et al., “A Fully Programmable 40 GOPS SDR Single Chip Baseband for LTE/WiMAX Terminals,” Proceedings of ESSCIRC 2008, Edinburgh, UK, Sep 2008
2012 Atlas M. Winter, et al., “A 335Mb/s 3.9mm² 65nm CMOS Flexible MIMO Detection-Decoding Engine Achieving 4G Wireless Data Rates,” (ISSCC 2012, San Francisco, USA, Feb 2012
2014 Tomahawk3 B. Nöthen, et al., “A 105GOPS 36mm2 Heterogeneous SDR MPSoC with Energy-Aware Dynamic Scheduling and Iterative Detection-Decoding for 4G in 65nm CMOS,” ISSCC 2014, Paper 10.7
2016 Tomahawk4 S. Haas, et al., “An MPSoC for Energy-Efficient Database Query Processing,” in Proceedings of Design Automation Conference (DAC 2016), Austin/Texas, USA, Jun 2016
2019 Kachel G. Fettweis, et al., “A Low-Power Scalable Signal Processing Chip Platform for 5G and Beyond - Kachel,” Asilomar Conf. on Signals, Systems and Computers, Pacific Grove, California, USA

2019: Kachel



Barkhausen Institut 

Challenge of a Future Digitization-Shaped Society:

Image copyright Shutterstock/Aleksandr Ozerov,
Shutterstock/Andrey_Popov

Can we trust machines the same way?
How do we trust humans?

What or whom exactly do 
we need to trust here?

How can we judge the
trustworthiness?​



Barkhausen Institut 

The BI Runs a Research Program on Communications and Computing Technology
to Ultimatly Develop the Methodology Basis for a Trustworthy System Design. 

Trustworthy
Operating-

System

Software-
System

Trustworthy 
Wireless 

Communications

Internet

Trustworthy
Platform Chips



Barkhausen Institut 

LinkedIn /corenext-eu

Twitter @COREnext_EU

Email info@corenext.eu

Website www.corenext.eu

COREnext:
Europe’s Semiconductor Platform for 6G
Lead:  Barkhausen Institute
Team: Ericsson, Nokia, Infineon, NXP, Sequans, Kalray, IHP, IMEC, LETI, Australo, TUD,…

mailto:info@corenext.eu
http://www.corenext.eu/
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Autonomous Driving – Challenges 
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Automated Vehicles – What a Vision
What if we could get into a driverless car 

• During a snow storm
• At night
• After dinner & drinking

How safe is safe
• AV cars cannot excuse themselves for errors
• AV cars must perform better than humans  10x
• 1/10 of lethal accidents compared with humans
• We can only decide after 1000 deaths by AVs if really safe…???
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Automated Driving – The Huge Data Challenge:
How many times must one visit every meter of road to achieve a statistically significant reliable sample?
 only after approximately 100 deaths/country: drive style and road style differs from country-to-country
 assuming 10% fatality over human driving we must calculate road visits via 1000 human driven deaths

2023 Deaths / km 2023 Road length Required Road visits

Germany 1.65 � 10−9 /𝑘𝑘𝑘𝑘 0.6 � 106𝑘𝑘𝑘𝑘 1m

Japan 1.68 � 10−9 /km 1.28 � 106𝑘𝑘𝑘𝑘 0.5m

USA 8.6 � 10−9 /𝑘𝑘𝑘𝑘 6.59 � 106𝑘𝑘𝑘𝑘 18k

China 6.3 � 10−5 /𝑘𝑘𝑘𝑘 6 � 106𝑘𝑘𝑘𝑘 2.6k

𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 =
𝑘𝑘𝑘𝑘 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
×

1
𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙

× 1000 =
1000

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
𝑘𝑘𝑘𝑘 × 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙
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AI/ML – The Signal Processing Challenge
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Signal Processing – We Love Linear (Matrix) Algebra

The minimum requirement for “linear Algebra” is a semiring:
Operator ① a semigroup over set Ɗ e.g. ① is ⨉ multiplication, Ɗ=ℕ
Operator ② a semigroup over set Ɗ e.g. ② is + addition, Ɗ=ℕ
Operator ① is distributive over ②

𝑎𝑎① 𝑏𝑏②𝑐𝑐 = 𝑎𝑎①𝑏𝑏 ② 𝑎𝑎①𝑐𝑐 = 𝑎𝑎①𝑏𝑏 ② 𝑎𝑎①𝑐𝑐
e.g. 𝑎𝑎 × 𝑏𝑏 + 𝑐𝑐 = 𝑎𝑎 × 𝑏𝑏 + 𝑎𝑎 × 𝑐𝑐 = 𝑎𝑎𝑎𝑎 + 𝑎𝑎𝑎𝑎

Matrices: 𝑌𝑌𝑘𝑘+1 = 𝑋𝑋𝑘𝑘 + 𝐴𝐴𝑘𝑘𝑌𝑌𝑘𝑘  𝑌𝑌𝑘𝑘+2 = 𝑋𝑋𝑘𝑘 + 𝐴𝐴𝑘𝑘𝑋𝑋𝑘𝑘 + 𝐴𝐴𝑘𝑘𝐴𝐴𝑘𝑘+1 𝑌𝑌𝑘𝑘

G. Fettweis and L. Thiele, “Algebraic recurrence transformations for massive parallelism,” in IEEE Trans. on Circuits and Systems I (TRANSCC), vol. 40, no. 12, Dec 1993, DOI:10.1109/81.26903

look-ahead look-ahead

http://doi.org/10.1109/81.269037
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Other Examples for Operators ① and ②

① ②
⨉ +
+ max(a,b)
+ min

min max
max min
min min

+ ln 𝑒𝑒𝑎𝑎 + 𝑒𝑒𝑏𝑏

G. Fettweis and L. Thiele, “Algebraic recurrence
transformations for massive parallelism,” in IEEE 
Transactions on Circuits and Systems I, 
vol. 40, no. 12, Dec 1993

M. Schmidt and G. Fettweis,
“On Memory Redundancy in the BCJR 
Algorithm for Nonrecursive Shift Register 
Processes,” in IEEE Transactions on 
Information Theory (TIT), vol. 46, no. 
4, Jul 2000
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Deep Learning Requirement
Network example

For ML (RELU) need 3rd operator: 𝑦𝑦𝑘𝑘+1 = Φ ③ 𝐴𝐴𝑘𝑘𝑦𝑦𝑘𝑘 ,

③ →
Δ

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝜑𝜑, 𝑥𝑥 = max(𝜑𝜑, 𝑥𝑥)

𝑦𝑦𝑘𝑘+1 = Φ 𝐴𝐴𝑘𝑘𝑦𝑦𝑘𝑘𝑦𝑦𝑘𝑘

𝐴𝐴𝑘𝑘 𝐴𝐴𝑘𝑘+1 𝐴𝐴𝑘𝑘+2
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AI/ML – Requires at Least 3 Operators
Generalization for >2 operators holds!

𝑎𝑎① 𝑏𝑏② 𝑐𝑐③𝑑𝑑 = 𝑎𝑎① 𝑏𝑏②𝑐𝑐 ③ 𝑏𝑏②𝑑𝑑

= 𝑎𝑎①𝑏𝑏 ② 𝑎𝑎①𝑐𝑐 ③ 𝑎𝑎①𝑏𝑏 ② 𝑎𝑎①d

Iff Operator ① is distributive over ②

Operator ① is distributive over ③

Operator ② is distributive over ③ G. Fettweis and L. Thiele, “Algebraic recurrence
transformations for massive parallelism,” in IEEE 
Transactions on Circuits and Systems I, 
vol. 40, no. 12, Dec 1993
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ML/DL: 3-Operator Matrix Dilemma

 This is where linear Matrix Algebra ends to date
We cannot combine/simplify the operations
 AI requires large matrices to be fetched continuously…

00 00 00 01 10 00 00 01 10

00 00 00 00 00 01 10 01 10

( ) ( ) ( ) ( )

( ) (( ) ( )) (( ) ( ))

A B A C a b a b a c a c

A B C a b a c a b a c

⊕ = ⊗ ⊕ ⊗
≠

⊕ = ⊕ ⊗ ⊕

     

    

00 01

10 11

a a
A

a a
 

=  
 

00 01

10 11

b b
B

b b
 

=  
 

00 01

10 11

c c
C

c c
 

=  
 

⊗
⊕


operator 1

operator 2

operator 3
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AI/ML – Implementation Challenge
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ZuSE KI-mobil - MPSoC with Energy Efficient AI Accelerator

• Continuous processing of data from multiple sensors
• Includes novel AI accelerator from TU Dresden
• On-chip image pipeline for data pre-processing from Dreamchip

Scientific 
Coordinator

Academia

Industry

SME

Technology 

Partners

Consortium
Lead

ZuKiMo
Chip

LiDAR

4x Radar

16x 
Camera

Driving 
Control

Autonomous Driving 
Use Case

© Adobe Stock
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Motivation and Overview

Real-time object detection and semantic 
segmentation in autonomous driving

Low latencyEnergy 
efficiency 

High 
Compute 

Performance

 Image pipeline with heterogenous processing elements required

possible objects

Simon Friedrich et al. - COOL Chips 2024
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Automotive Platform MPSoC
2023: ZuKiMo ADAS MPSoC

93mm2 in GF 22FDX, 1.8 billion transistors



Vo
da

fo
ne

 C
ha

ir
20

Compute Units

Motivation and Overview
• Overview of SoC:

Fig.: Block diagram of SoC supporting image processing pipeline

• APU (Dual-Core ARM Cortex A65AE)
• Safety Island (Dual-Core ARM R52)
• DSP & CNN accelerator (Xtensa NNA110)
• Novel AI accelerator (mixed-precision, D-Conv)

Internal/External Memory

Custom Image Signal Processor (DreamChip ISP)

Peripherals

 Elements of image pipeline integrated into SoC
 Aim: improve efficiency of AI accelerator for image processing
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ZuKIMo Energy Efficient AI Accelerator: 18mm2 

Networks with layer dependent word length
 DeepLabV3+ (4 bit): 2.2x less energy than [1]

Advanced features (e.g. semantic segmentation)
 DeepLabV3+ (8 bit): 5x less energy than [2]

Throughput
(TOPS of 8 bit standard Conv.)

Adaptability
(variable word length)

Advanced Features
(dilated/transposed Conv.)

Energy Efficiency
(TOPS/W of 8 bit standard Conv.)

[1] J. Jung et al., "An Energy-Efficient, Unified CNN Accelerator for Real-Time Multi-Object Semantic Segmentation for Autonomous Vehicle," in IEEE Transactions 
on Circuits and Systems I: Regular Papers, 2024.
[2] C.-H. Lin et al., ”7.1 A 3.4-to-13.3TOPS/W 3.6TOPS Dual-Core Deep-Learning Accelerator for Versatile AI Applications in 7nm 5G Smartphone SoC,” in 2020 IEEE 
International Solid-State Circuits Conference (ISSCC), 2020.
[3] S. Friedrich et al., “A 22 nm 10 TOPS Mixed-Precision Neural Network SoC for Image Processing with Energy-Efficient Dilated Convolution Support,” in 
Proceedings of IEEE Symposium on Low-Power and High-Speed Chips (COOLCHIPS), Apr 2024.

Comparing Accelerators:

Optimized for semantic segmentation [1]

Optimized for standard convolutions [2]

ZuKiMo Chip [3]

Networks with advanced features
or below 8 bit
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Novel AI Accelerator - Architecture
• Bit-serial Architecture:

 Bit-serial processing elements
 Precision-scalable operands
 Bit-serial memory design
 Performance: 6.144 TOPS (INT8, @1 GHz)

• Scalable Architecture:
 Variable size of CONV array with broadcasted input data
 High utilization of processing elements

• Regular Instruction Set and Memory Mapping:
 Lightweight instruction set
 Efficient acceleration of dilated and transposed convolution

[3]

[3] S. Friedrich, S. Balamuthu Sampath, R. Wittig, M. Rohit Vemparala, N. Fasfous, E. Matúš, W. Stechele and G. Fettweis, “Lightweight Instruction Set for Flexible Dilated Convolutions and Mixed-Precision Operands,” 
in Proceedings of 24th International Symposium on Quality Electronic Design (ISQED 2023), San Francisco, USA, Apr 2023.
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Novel AI Accelerator - Architecture
Supported Instructions:
Convolution Layer: 
 1D CONV 
 2D CONV
 Depthwise CONV
 Dilated CONV 
 Transposed CONV

Fully Connected Layer

Padding (Symmetric)

Pooling (max-Pool)

Activation Functions: Custom Function using Piecewise Linear Approximation

Constant Value Addition and Multiplication

Elementwise Addition of 2 Layers (Residual Connection)

S. Friedrich, S. Balamuthu Sampath, R. Wittig, M. Rohit Vemparala, N. Fasfous, E. Matúš, W. Stechele and G. Fettweis, “Lightweight Instruction Set for Flexible Dilated Convolutions and Mixed-Precision Operands,” 
in Proceedings of 24th International Symposium on Quality Electronic Design (ISQED 2023), San Francisco, USA, Apr 2023.

[4]
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Architecture of Accelerator and Neural Processing Unit
Control Unit (CU):

 RISC-V core, 32 bit, extensions A/C/E
 DNN scheduling, triggers NPU to execute DNN layer
 NPU/DMA configuration
 Issuing data transfers, interrupt handling

Neural Processing Unit (NPU):
 3 different bit-serial compute engines
 Mixed-precision word length: 2-8 bit
 Zero skipping for dilated and transposed convolution
 Regular addressing scheme:

• Lightweight instruction set, 60 bit per instruction
• Footprint 5x smaller than EdgeTPU for MobileNet-v2

Fig.: AIA including Neural Processing Unit (NPU) and Control Unit (CU)
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Efficient Dilated Convolution Support
• Memory Alignment:

 Unified memory for features, filters, and biases
 32 on-chip SRAM banks
 Each with 8 separately addressable sub-banks

• Address Generation:
 32 x 24 OS PEs, 6 partitions with 4 columns each
 Initial: 1 offset, 1 selector per PE column 
 Runtime: 1 rel. sub-bank selector (SBS) for all PEs 

(and 1 rel. bank selector (BS))
 Strided load unit allows non-adjacent SBS/BS
 Weights (static) are sorted before runtime, no zeros

 Set SBS to skip adjacent features

PE columns (A-D). Non-highlighted features/weights of A and D are 
not loaded and computations are skipped. Address jump for 
execution step 1 shown.

 Only compute operations with non-zero filter values

zero skipping

[reference] S. Friedrich et al., “A 22 nm 10 TOPS Mixed-Precision Neural Network SoC for Image Processing with Energy-Efficient Dilated Convolution Support,” in Proceedings of IEEE COOLCHIPS, Apr 2024.
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6-24 TOPS Programmable AI Accelerator:
 Hardware: TU Dresden – Vodafone Chair
 Compiler:  Uni Hanover – IMS
 Chip area: 19%
 On-Chip SRAM: 37%
 Implemented for 1 GHz clock frequency

 Purple: convolution engine (6.144 TOPS)
 Gray:    SRAM macros
 Rose:    misc. (routing, AGU, CU, DMAs)

Technology FDX 22nm

Area 93.06 mm2

Logic area 65.14 mm2

Memory 91.25Mbit @ 27.92 mm2

Core voltage 0.8V

# transistors 1.8 B

# cameras inputs 16

IP blocks

NoC

Cores

MPSoC design

Details of Our AI MPSoC
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Dilated Convolution – Energy Analysis
Our accelerator:

 Efficient support for D-Convs due to zero skipping
 Compute kernels with dimensions 𝐾𝐾𝑥𝑥,𝑦𝑦

Accelerator ISSCC2020:
 No zero skipping for (dilated) convolutions
 Compute enlarged kernels with dimension 𝐾𝐾𝑥𝑥,𝑦𝑦

⋆

Results of energy analysis:
 Approximated by energy efficiency and total operations
 Number of computations reduced for 𝑅𝑅𝐷𝐷 > 1 : 

reduced energy consumption Relative energy consumption per 8 bit D-Conv layer. 
Compared to ISSCC2020, normalized to 7 nm.

𝐾𝐾𝑥𝑥,𝑦𝑦 = 3, 𝑅𝑅𝐷𝐷 = 2.52%

𝐾𝐾𝑥𝑥,𝑦𝑦
⋆ = 𝐾𝐾𝑥𝑥,𝑦𝑦 − 1 ⋅ 𝑅𝑅𝐷𝐷 + 1

 Efficient D-Conv support reduces energy consumption
even for DNNs with majority of standard convolution layers
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AI Accelerator - Performance Comparison

* C. -H. Lin et al., ”7.1 A 3.4-to-13.3TOPS/W 3.6TOPS Dual-Core Deep-Learning Accelerator for Versatile AI Applications in 7nm 5G Smartphone SoC,” in 2020 IEEE International Solid-State Circuits Conference (ISSCC), 2020.

4x

2x-7x

0.7x
- 3x

2023 Zukimo Chip 

𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻
𝒎𝒎𝒎𝒎𝟐𝟐 𝑾𝑾

→ 𝟏𝟏. 𝟏𝟏 … 𝟒𝟒. 𝟐𝟐 ×

TOPS/mm2

TOPS 

TOPS/W 

*
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Roadmap for Zukimo Accelerator

Improve current design:
 Extended quantization following industry trend

Increase of energy efficiency:
 AVS (adaptive voltage scaling)
 Optimize compute units
 Further increase data reusability

Efficient support for Transformers

Additional features
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