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Al Model Size Growth and Memory Bottleneck

Increase in the Usage of Large Language Models (LLMs) and Transformer-based

Performance(TFLOPS/s)
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Models - Substantial increase in Model Size (humber of parameters),
Computational Demands, and Required Memory Usage
« Growth in Model Size Beyond the Level of Improvements in Computational
Performance and Memory Bandwidth of Processing Units & Growing Demand
for Model Lightweighting Techniques
* LLMs, unlike traditional CNN models, exhibit memory (bandwidth)-bound
characteristics = Increasing Importance of Model Compression Techniques
- NLP’s Moore’s Law: Every year model size increases by 10x
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Cloud based / On-Device Al system

« Increase in the Number of Information Gathering Sensors and Devices 2>
Rapid Growth in Data Volume

« Rising Demand for Stability and Accuracy in Intelligent Services >
Increased Complexity of Al Models

« Increasing Privacy and Security Concerns - Demand for Local Processing
of Collected Data

= The increasing necessity for lightweight Al models and On-device Al
accelerators to support services directly on edge devices
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Edge devices with lower performance and memory
capacity compared to cloud-based Al

Prediction performance per watt Throughput per second for ResNet152
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ICLR 2020: AutoML for TinyML with Once-for-All Network
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Model Compression for Lightweight Al Models:
uantization, Prunin

Knowledqge Distillation
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Quantization

« Deep learning models, especially large language models (LLMs), tend to
be probabilistic and over-parameterized - allowing for the utilization of
approximation such as lower precision data formats (e.g., FP64, 32 —
FP16, FP8, INTS, INT4, etc.).

 Quantization has various advantages.

— High-throughput by ease of computation and utilization of SIMD (Single
Instruction Multiple Data) operation

— Reduced memory traffic due to decreased bit demand per element.
— Decreased on-chip storage requirements.
— Reduced energy consumption resulting from data movement.

« Efficiency vs. Accuracy tradeoff

— The trade-off between improved efficiency due to approximation and decreased
model accuracy.

Sign Exponent Mantissa
fp32 U 8 | 23 |

NN o
.. .. DLFloati6 6 1 5 ] s [l 5121
—_ —> int4 [ 3]
.. .. bfloatt6e[[ 8|7 ] ints (7]

inti6 [ 15 |

ISSCC 2024 - Forum 2.7: <Quantizing LLMS for Efficient Inference at the Edge> 1SSOC 2024 Short Course L. Chang

2% SEJONG UNIVERSITY [EE 7) a4 48t 7

£/ Department of Computer Engineering KOREA UNIVERSITY




Quantization design choices and issues

 Range (floating point, integer)
* Mapping

« Scaling granularity . S

* Post-training quantization (PTQ) vs | /, '\

quantization-aware training (QAT)
« PTQ for LLM: without retraining i T
 Accuracy drop with PTQ
* OQutlier in LLM
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Pruning

 Pruning, a lightweighting technique in deep learning, involves selecting less impactful
values based on criteria like magnitude and zeroing them out. This process creates
compressible sparse matrices, reducing memory usage and computational workload.

* Pruning techniques can be categorized based on the criteria used to select values to be

zeroed out:

— Unstructured pruning, Structured pruning, N:M pruning
« The selection method for zeroing out values entails a trade-off between accuracy and

memory usage.

— Structured and N:M pruning technique: select values to be zeroed out based on predefined rules
or constraints. - Potentials for decreasing in accuracy.

— Unstructured pruning: minimize accuracy degradation by zeroing out values without specific
rules. - irregularity like variable data and index counts, reduced memory reference efficiency,
decreased resource utilization, scheduling issues, and increased hardware complexity.
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Attend Who is Weak: Pruning-assisted Medical Image Localization under
Sophisticated and Implicit Imbalances
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Pruning — design choices, issues

* Pruning Timing
— Pre-training pruning, during-training pruning, post-training pruning
* Pruning methods

— magnitude-based, loss-based, regularization (2)  [EPmaing— Trsning -7 Finewning
— lterative, one-shot pruning . ;
— Structured pruning, unstructured pruning (b) Training and Pruning -~ Fine-tuning
* Indexing of pruned sparse matrices o !
— CSR (Compressed Sparse Row) (c) | Training —> Pruning --» Finc-tuning
— RLE (Run Length Encoding)

Magnitude Pruning
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The Necessity of Quantization/Pruning

* Inthe case of LLMs, unlike traditional CNNs, they exhibit a memory-
bandwidth-bound nature.

 Quantization and pruning techniques are crucial for lightweighting LLM
models with such characteristics. These techniques aim to reduce model
size, computational demands, and energy consumption for operations and
memory references.

« Decreasing data precision through quantization and reducing the number
of processed data through pruning can yield different effects in hardware

design.
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The Trade-offs in Quantization and Pruning.

« There are trade-offs such as model size, required computation, memory
bandwidth, accuracy, and computation/memory access complexity.
— Techniques like quantization and pruning offer advantages such as reducing

model size, required computation, and memory bandwidth. However, they
inherently lead to a loss of model accuracy.

— To mitigate accuracy loss from quantization and pruning, more sophisticate
techniques such as fine-grain quantization and unstructured pruning are utilized.
However, these methods may lead to issues such as increased computational
and memory access complexity, as well as hardware complexity.

— Inthe case of LLMs, Post-Training Quantization (PTQ) is a practical method.
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Challenges for Applying Fine-Grained Quantization

and Unstructured Pruning: Irregularity

+ Performing fine-grain quantization and unstructured pruning:
— Offers significant advantages in terms of accuracy.

— However, the irregularity and complexity of data and index information due to the
diversity of non-zero elements within the matrix, as well as the use of data with
varying bit widths, result in increased irregularity and complexity in

Computations and memory referenceS. ISSCC 2024 - Forum 2.7: <Quantizing LLMS for Efficient Inférence at the Edge>
ISS0C 2024 Short Course: Marian Vernelst
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Irregularity and Increase of Index Size Storage Ratio
ressive Quantization and Sparsit

with A

« As quantization progresses (FP32 — FP16 — FP8/INT8 — INT4), data size
decreases while index size remains unchanged, leading to a relative increase
in the proportion of storage capacity dedicated to storing index information.
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Irregularity of Memory Access
with Model Compression Techniques

« Theirregularity in both data and index sizes makes it difficult to efficient

memory access.
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Demands for Model Compression Techniques

& Design Issues.

Issue 1:

Explosive Growth of AI Model
Size

Issue 2: Increase in Index Data

Overhead with Pruning and
Aggressive Quantization.

Issue 3: Irregularities of Memory Access
in Index and Data Sizes with
Conventional Pruning and Quantization.
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A Novel Sparse Matrix Indexing Scheme,
Considering both Quantization and Pruning.

« Optimization information bitmap indexing:
— anovel sparse matrix indexing technique

— theindex size remains constant regardless of the number of non-zero elements in the matrix
(in contrast to existing sparse matrix indexing techniques such as CSR, RLE, where the index
size varies based on the number of non-zero elements in the matrix).

— includes optimization information for operations and memory access, along with indexing
information for non-zero elements and quantization data, to optimize computation and
memory references

— has smaller index size (cf. CSR)
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Compression representation technique utilizing bitmaps
and containing performance-optimization information
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Methods for Ensuring Regularity in Memory Access

« Adaptive quantization, quantization aware pruning techniques
— Proposal for an adaptive quantization technique that applies varying levels
of quantization to layers, matrix/vector units, etc., considering outliers.

Quantization aware pruning technique that adjusts the level of pruning
based on the degree of quantization to alleviate irregularities in memory and
computation resulting from quantization and pruning.

Lay;_-r L Adaptive Quantization
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Quantization .
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Adaptive Quantization, Quantization Aware Pruning

« Adaptive quantization, quantization aware pruning techniques

— Proposal for an adaptive quantization technique that applies varying levels
of quantization to layers, matrix/vector units, etc., considering outliers.

— Quantization aware pruning technique that adjusts the level of pruning
based on the degree of quantization to alleviate irregularities in memory and
computation resulting from quantization and pruning.

‘ compression ‘ compression ‘ compression ‘ Quantization ‘ Quantization Pruning &
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Summary

« As Al models grow larger, the need for lightweighting techniques becomes
essential especially for On-device Al.

« However, maintaining accuracy while lightweighting the model involves a
trade-off that increases memory access and computational complexity.

« Theresearch proposes a new sparse matrix indexing technique based on
bitmap, where the index size remains constant regardless of the number of
non-zero elements in the matrix and quantization-aware pruning to deliver
the regularity for efficient memory access, higher utilization and less Al
accelerator hardware complexity.

Adaptive Quantization
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guantization aware pruning techniques
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