
Zenohex:
a Pub/Sub based Communication Library

from Device to the Cloud

Hideki Takase
(The University of Tokyo)

MPSoCʼ24
2024/07/08

Collaborators:
Shintaro Hosoai (Institute of Technology)
Mitsuhiro Osaki, Kazuma Nishiuchi (CityNet Inc.)
Yutaka Kikuchi (Kochi University of Technology)

2

Agenda
•TL;DR: Zenohex = Zenoh + Elixir
•Background & Motivation:
-What is the issue in the wide-area distributed system
-Publish/Subscribe based communication
• Introduction of Zenoh and Elixir
-Basic features, ecosystem, and communication method

• Zenohex
-How do we realize this
-Demonstration

3

What is the issue
•More and more complex system configurations

Local

Edge
Client

Develop
Edge-Client, Server, MEC, Cloud
・Spec
・OS
・Language
・Cloud-Service Configuration

Connected Network
Local, Mobile, WAN, Leased circuit

Communication Protocol
Serial, http(s), MQTT, ROS, WebSocket
REST API, gRPC, FTP, SMTP

・・and more

Cloud

Server

Leased
circuit

Edge
Client

WAN

Cloud

Mobile

Cloud

MEC

MEC

Server

4

Publish/Subscribe Messaging
• Brokered (e.g., MQTT)
-need to know where is broker

• Peer-to-Peer (e.g., DDS)
-autonomous search for partners
- typically limited on the same NW

• Benefits
-Easy to construct asynchronous

and loosely coupled architecture
-nodes can be added/deleted/

restarted independently

publisher1

publisher2

topicA

topicB

subscriber1

sub2

sub3

broker

• Zero Overhead Pub/Sub, Store/Query and Compute
-Zero network overhead protocol
-DDS-like communication within a network and

MQTT-like communication between networks
• Dev leader: ZettaScale Technology Ltd.
-GitHub: https://github.com/eclipse-zenoh/

üOne of the Eclipse Project
üEclipse Public License 2.0 and/or Apache 2.0

- Initially implemented in OCaml,
and then migrated to Rust in Oct 2020

5

What is??

https://www.zettascale.tech/
https://github.com/eclipse-zenoh/

6

• Pub / Sub (Push)
-basic pub/sub method

• Pub / Sub (Pull)
-Sub receives in its own timing

• Pub / Store / Get
-KVS based computation

• Get / Reply
-RPC-like communication

node node

node node

node node

node node

Pub

Sub(callback)

Sub(Pull)

Pub

Pub

Get

Reply

Pull

Eloquent

7

Peer to Peer
Clique Mesh

Brokered Routed

Scalable

Peer

Peer Peer

Peer

Peer

Peer

Peer

Peer

Peer

client

client

Router Router Router

client

client

clientclient

clientclient

• Zenoh router behaves as
a broker between networks
• We can construct a wide area

network structure easily!

Router Router

• Low latency and High throughput
-10 us latency in the single machine,

16 us in multiple machines (P2P config.)
-~70 Gbps at 8 KB payload

ü35x higher than MQTT,
23x than Kafka, 3.3x than DDS

• Why?: minimum wire overhead
-only 5 bytes for delivering messages

8
https://zenoh.io/blog/2023-03-
21-zenoh-vs-mqtt-kafka-dds/

arxiv:2303.09419

Fast

https://zenoh.io/blog/2023-03-21-zenoh-vs-mqtt-kafka-dds/
https://zenoh.io/blog/2023-03-21-zenoh-vs-mqtt-kafka-dds/
https://arxiv.org/abs/2303.09419

9

QUIC, TLS, TCP,
UDP Unicast,
UDP Multicast
IPv4, IPv6
6LoWPAN

WiFi, Ethernet,
Bluetooth, Serial

APIs for various languages
• zenoh-python
• zenoh-c
• zenoh-cpp
• zenoh-java

https://zenoh.io/docs/
getting-started/first-app/

Runs Everywhere!
• zenoh-kotlin
• zenoh-csharp
• zenoh-go

Getting Started
with Python

Native

https://github.com/eclipse-zenoh/zenoh-python
https://github.com/eclipse-zenoh/zenoh-c
https://github.com/eclipse-zenoh/zenoh-cpp
https://github.com/eclipse-zenoh/zenoh-java
https://zenoh.io/docs/getting-started/first-app/
https://zenoh.io/docs/getting-started/first-app/
https://github.com/eclipse-zenoh/zenoh-kotlin
https://github.com/eclipse-zenoh/zenoh-csharp
https://github.com/eclipse-zenoh/zenoh-go

We love Elixir!!
Functional language (appeared in 2012)

Operated on Erlang VM (BEAM)
• lightweight processes with robustness
• highly concurrency/parallelism
• soft real-time feature
• easy to realize distributed and fault tolerance system

* The copyrights of these logos
belong to their respective creators

• Similar to Actor Model
-Actors (processes) send and receive messages
- "Let it Crash”: The problematic process should be

promptly crashed and restored immediately
-Suitable to IoT system development!

10

11* The copyrights of these logos
belong to their respective creators

•Awesome ecosystem!

We love Elixir!!

12

Zenohex = Zenoh + Elixir
•Why Zenohex?
-We should find a network library that is over the network
-Marriage of Zenoh and Elixir could take balance

programmability and performance
•How to Implement︖
-Zenoh is written in Rust
-Use Rustler

üEasy to bind Rust and Elixir
üGenerate boilerplate project
üIntegrate cargo and mix build Zenoh Protocol by Rust

Erlang VM
Elixir
node1Elixir

node2

process

Rustler

Python
node2

C++
node1

13

Zenohex Software Structure

Zenoh library

Zenohex_nif

Zenohex API
（Similar to Zenoh API）

Zenohex.Nif

Rustler

Zenohex advanced API
（Elixir like library）

14

How to use Zenohex
• add {:zenohex, "~> 0.3.0"} to mix.exs

•
defmodule ZenohElixir.Pub do
def main do
{:ok, session} = Zenohex.open()
{:ok, publisher} = Zenohex.Session.declare_publisher

(session, "key/expression")

spawn(ZenohElixir.Pub, :publish, [publisher, 0])
end

def publish(publisher, num) do
msg = "Hello from Elixir!! " <> to_string(num)
IO.puts "[pub.ex] " <> msg

Zenohex.Publisher.put(publisher, msg)

Process.sleep(1000)
publish(publisher, num + 1)

end
end

defmodule ZenohElixir.Sub do
def main do
{:ok, session} = Zenohex.open()
{:ok, subscriber} = Zenohex.Session.declare_subscriber

(session, "key/expression")

spawn(ZenohElixir.Sub, :subscribe, [subscriber])
end

def subscribe(subscriber) do
case Zenohex.Subscriber.recv_timeout(subscriber) do
{:error, :timeout} -> nil
{:ok, msg} -> IO.puts "[sub.ex] " <> msg.value

end

subscribe(subscriber)
end

end

Publisher Subscriber

15

論よりRUN!! "ron yori run"The RUN is mightier than the word

DEMO: over the network

Elixir
Zenohex

Subscriber

Elixir
Zenohex
Publisher

Zenoh router
(zenohd)

Phoenix + Zenohex application

Zenoh router
(zenohd):7447/tcp

:4000/tcp

①Local ← Global

②Local → Global

Amazon EC2this PC

16

Conclusion
• Zenohex = Zenoh + Elixir
-Zenoh: lightweight and easy-to-deploy comm. library
-Elixir: most promising language for IoT systems

•WiP and Future Works
-Integration to Nerves IoT devices
-Quantitative evaluation
-Apply to actual wide-area

distributed systems

A part of this work is going as collaborative research with SoftBank Corp.,
and was supported by the commissioned research (04001) by National

Institute of Information and Communications Technology (NICT), Japan.

