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Agenda
•TL;DR: Zenohex = Zenoh + Elixir
•Background & Motivation:
-What is the issue in the wide-area distributed system
-Publish/Subscribe based communication
• Introduction of Zenoh and Elixir
-Basic features, ecosystem, and communication method

• Zenohex
-How do we realize this
-Demonstration
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What is the issue
•More and more complex system configurations

Local

Edge
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Develop
Edge-Client, Server, MEC, Cloud
・Spec
・OS
・Language
・Cloud-Service Configuration

Connected Network
Local, Mobile, WAN, Leased circuit

Communication Protocol
Serial, http(s), MQTT, ROS, WebSocket
REST API, gRPC, FTP, SMTP

・・and more
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Publish/Subscribe Messaging
• Brokered (e.g., MQTT)
-need to know where is broker

• Peer-to-Peer (e.g., DDS)
-autonomous search for partners 
- typically limited on the same NW

• Benefits
-Easy to construct asynchronous 

and loosely coupled architecture
-nodes can be added/deleted/

restarted independently

publisher1

publisher2

topicA

topicB

subscriber1

sub2

sub3

broker



• Zero Overhead Pub/Sub, Store/Query and Compute
-Zero network overhead protocol
-DDS-like communication within a network and

MQTT-like communication between networks
• Dev leader: ZettaScale Technology Ltd.
-GitHub: https://github.com/eclipse-zenoh/

üOne of the Eclipse Project
üEclipse Public License 2.0 and/or Apache 2.0

- Initially implemented in OCaml, 
and then migrated to Rust in Oct 2020
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What is??

https://www.zettascale.tech/
https://github.com/eclipse-zenoh/
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• Pub / Sub (Push)
-basic pub/sub method

• Pub / Sub (Pull)
-Sub receives in its own timing

• Pub / Store / Get
-KVS based computation

• Get / Reply
-RPC-like communication 

node node

node node

node node

node node

Pub

Sub(callback)

Sub(Pull)

Pub

Pub

Get

Reply

Pull

Eloquent
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Peer to Peer
Clique Mesh

Brokered Routed

Scalable

Peer

Peer Peer

Peer

Peer

Peer

Peer

Peer

Peer

client

client

Router Router Router

client

client

clientclient

clientclient

• Zenoh router behaves as 
a broker between networks
• We can construct a wide area 

network structure easily!

Router Router



• Low latency and High throughput
-10 us latency in the single machine,

16 us in multiple machines (P2P config.)
-~70 Gbps at 8 KB payload

ü35x higher than MQTT, 
23x than Kafka, 3.3x than DDS

• Why?: minimum wire overhead
-only 5 bytes for delivering messages
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https://zenoh.io/blog/2023-03-
21-zenoh-vs-mqtt-kafka-dds/

arxiv:2303.09419

Fast

https://zenoh.io/blog/2023-03-21-zenoh-vs-mqtt-kafka-dds/
https://zenoh.io/blog/2023-03-21-zenoh-vs-mqtt-kafka-dds/
https://arxiv.org/abs/2303.09419
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QUIC, TLS, TCP, 
UDP Unicast, 
UDP Multicast
IPv4, IPv6
6LoWPAN

WiFi, Ethernet, 
Bluetooth, Serial

APIs for various languages
• zenoh-python
• zenoh-c
• zenoh-cpp
• zenoh-java

https://zenoh.io/docs/
getting-started/first-app/

Runs Everywhere!
• zenoh-kotlin
• zenoh-csharp
• zenoh-go

Getting Started 
with Python

Native

https://github.com/eclipse-zenoh/zenoh-python
https://github.com/eclipse-zenoh/zenoh-c
https://github.com/eclipse-zenoh/zenoh-cpp
https://github.com/eclipse-zenoh/zenoh-java
https://zenoh.io/docs/getting-started/first-app/
https://zenoh.io/docs/getting-started/first-app/
https://github.com/eclipse-zenoh/zenoh-kotlin
https://github.com/eclipse-zenoh/zenoh-csharp
https://github.com/eclipse-zenoh/zenoh-go


We love Elixir!!
Functional language (appeared in 2012)

Operated on Erlang VM (BEAM)
• lightweight processes with robustness
• highly concurrency/parallelism
• soft real-time feature
• easy to realize distributed and fault tolerance system

* The copyrights of these logos   
belong to their respective creators

• Similar to Actor Model
-Actors (processes) send and receive messages
- "Let it Crash”: The problematic process should be 

promptly crashed and restored immediately
-Suitable to IoT system development!
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11* The copyrights of these logos   
belong to their respective creators

•Awesome ecosystem!

We love Elixir!!
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Zenohex = Zenoh + Elixir
•Why Zenohex?
-We should find a network library that is over the network
-Marriage of Zenoh and Elixir could take balance 

programmability and performance
•How to Implement︖
-Zenoh is written in Rust
-Use Rustler

üEasy to bind Rust and Elixir
üGenerate boilerplate project
üIntegrate cargo and mix build Zenoh Protocol by Rust

Erlang VM
Elixir
node1Elixir

node2

process

Rustler

Python
node2

C++
node1
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Zenohex Software Structure

Zenoh library

Zenohex_nif

Zenohex API
（Similar to Zenoh API）

Zenohex.Nif

Rustler

Zenohex advanced API
（Elixir like library）
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How to use Zenohex
• add {:zenohex, "~> 0.3.0"} to mix.exs

•
defmodule ZenohElixir.Pub do
def main do
{:ok, session} = Zenohex.open()
{:ok, publisher} = Zenohex.Session.declare_publisher

(session, "key/expression")

spawn(ZenohElixir.Pub, :publish, [publisher, 0])
end

def publish(publisher, num) do
msg = "Hello from Elixir!! " <> to_string(num)
IO.puts "[pub.ex] " <> msg

Zenohex.Publisher.put(publisher, msg)

Process.sleep(1000)
publish(publisher, num + 1)

end
end

defmodule ZenohElixir.Sub do
def main do
{:ok, session} = Zenohex.open()
{:ok, subscriber} = Zenohex.Session.declare_subscriber

(session, "key/expression")

spawn(ZenohElixir.Sub, :subscribe, [subscriber])
end

def subscribe(subscriber) do
case Zenohex.Subscriber.recv_timeout(subscriber) do
{:error, :timeout} -> nil
{:ok, msg} -> IO.puts "[sub.ex] " <> msg.value

end

subscribe(subscriber)
end

end

Publisher Subscriber
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論よりRUN!! "ron yori run"The RUN is mightier than the word

DEMO: over the network

Elixir
Zenohex

Subscriber

Elixir
Zenohex
Publisher

Zenoh router
(zenohd)

Phoenix + Zenohex application

Zenoh router
(zenohd):7447/tcp

:4000/tcp

①Local ← Global

②Local → Global

Amazon EC2this PC
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Conclusion
• Zenohex = Zenoh + Elixir
-Zenoh: lightweight and easy-to-deploy comm. library
-Elixir: most promising language for IoT systems

•WiP and Future Works
-Integration to Nerves IoT devices
-Quantitative evaluation
-Apply to actual wide-area

distributed systems

A part of this work is going as collaborative research with SoftBank Corp., 
and was supported by the commissioned research (04001) by National 

Institute of Information and Communications Technology (NICT), Japan.


