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A 2D Cellular automaton: Game of Life

The Game of Life [Conway, 1970]. I t I .

e |[tis based on
a finite two-dimensional grid of cells.

e Each cell has two states: dead or alive. .'

e Atransition from dead to alive occurs b
if there are exactly 3 alive neighbors.

* Atransition from alive to dead occurs A
if fewer than 2 or more than 3
neighbors are alive.

e All cells transit in synchrony. The animation shows a Gosper glider gun.

It disproves Conway's original conjecture that
It is an example of a cellular automaton. no pattern can grow indefinitely. [wikipedia]
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A 2D CA: Game of life, a programmable computer

Out[2]:

» 0:09/1:14

Nicolas Loizeau, 2018, https://www.nicolasloizeau.com/gol-computer.

Paul Rendell built a Turing machine in GoL [2000] and a universal Turing machine [2009].




Rule 110

A 1D cellular automaton
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Rule 110is a 1-dimensional "borderline chaotic" cellular automaton [Wolfram, 2003].

With a particular repeating background pattern it is Turing complete [Cook, 2004].



A 3D cellular automaton: a model of biofilm dynamics

Out[5]:

120 Hours

» 0:12/0:50

Simulates the response of a microbial biofilm to antimicrobial treatment.
Live cells are shown in green and dead cells in red [Hunt, 2005].



Cellular automata ?

A form of art

[Adamatzky & Martinez,
2016]

A view on the universe

['t Hooft, 2016]

Designing Beauty:

The Art of
Cellular Automata

Gerard 't Hooft‘,

The Cellular
Automaton

Interpretation
of Quantum
Mechanics

@ Springer Open

A new kind of science

[Wolfram, 2002]

| Tommaso Toffoli |
Cellular
Avutomata
Machines

A New Environment t

A model of computation
for practical use

for Modeling

[Toffoli & Margolus, 1987] |



"Useful” cellular automata: (research) questions

1. In what sense are cellular automata a model of computation?
2. What are (and could be) practical/useful applications of cellular automata?
3. What are typical/potential workloads of such applications?

4. How to exploit the (intrinsic) parallelism of cellular automata?
What are the limits to these forms of parallelism?
How well do these forms of parallelism scale?

5. How well would CA run on a typical GPU accelerator?
What would a dedicated/tailored hardware architecture look like?

6. The 2020s is the decade of accelerators (GPUs, NPUs, quantum computers).
Could acellular-automaton accelerator offer a viable path beyond exascale computing?




The CA model of computation: a brief history

1969
1970
1982

1987

e 2004
e 2009

1940s : Stanislaw Ulam and John von Neumann discover cellular automata,

while working on the problem of self-replicating systems.

: Konrad Zuse proposes Rechnender Raum: the universe as a cellular automaton.
: John Conway discovers the Game of Life.

: Richard Feynman suggests to quantize cellular automata,

now known as Quantum Cellular Automata.

: Norman Margolus proposes block cellular automata,

the key to time-reversibility and conservation laws.

: Matthew Cook shows that the 1D CA Rule 110is Turing complete.

: Paul Rendell constructs a Turing machine in the Game of Life.



The CA model of computation: diversity

Cell datatype :1 bit, integer, real, complex, vector of ...

Cell grid : 1D, 2D, 3D,.. (finite/infinite), +optional 1D history.
Neighborhood :e.g.Von Neumann/Moore, range. See —

Transition rules : homogeneous vs inhomogeneous,
deterministic vs probabilistic,
synchronous vs asynchronous,
linear vs non-linear.

The standard Game of Life:
1bit, 2D (no history), Moore (r=1), homogeneous, sync., non-linear.

Special tilings: e.g. a 2D tiling with triangular or hexagonal cells,
or a 3D (layered) tiling of a sphere.

Time-reversible cellular automata ("partitioning CA"),
to be discussed later.

Von Neumann
1D, r=1

Von Neumann
2D, r=1

Von Neumann
2D, r=2

Moore
2D, r=1

Moore
2D, r=2
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The CA model of computation: versus FSM

A finite, synchronous, and deterministic cellular automaton (with discrete cell states)
can be viewed as a deterministic FSM.

A deterministic finite-state machine is a quintuple (X, .S, sg, 0, F) .

e The input alphabet X consists of a single symbol 7,
hence a CAis a so-called "generator FSM",

e The state space .S is structured, e.g. [0, 30) X [0, 40) X {dead, alive}.
e Theinitial state sg € S.
e Transition 6 = combined effect of all cell transitions.

e The final states F C .S, e.g. the F consists of a single state "all cells dead".

If the CAis also linear then transition 6 can be represented by a matrix multiplication.

11.1>



The CA model of computation: key properties

1. Versatile, universal:
As a model of computation it is Turing complete.

2. Highly regular:
(Nearly) all cells have the same neighborhood, with possibly (periodic) boundaries.
All cells have the same (or similar) transition function.

3. Abundantly parallel:
All cells transit simultaneously.

4. Strictly local:
The transition function depends on a local neighborhood.

Is this the ideal model of computation for High Performance Computing?

12.1>



Applications of cellular automata

Cellular

A New Environment

Cellular automata are discrete dynamical systems BUIOMAID s ocelng

Machines

whose behavior is completely specified in terms of a local relation,
much as is the case for a large class of continuous dynamical systems
defined by partial differential equations.

In this sense, cellular automata are the computer scientist's
counterpart to the physicist's concept of ~field."

Also, book by J. Schiff: Cellular Automata: A Discrete View of the World.

Physical processes :
diffusion, heat flow, lattice gasses, crystal formation, fluid dynamics, spin glasses, ...

Also [Google]: chemistry, biology, urban planning, weather/climate models, cryptography, ....
ACRI 2024 : 16th Cellular Automata for Research and Industry conference, AUTOMATA 2024,

However, the status of actual deployment of cellular automata is unclear.
Not many documented examples.
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Applications of cellular automata: for global forecasts
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This study explores the impact of representing convective organization in weather and climate
models using cellular automata. One cell & 1 square degree.

[National Oceanic and Atmospheric Administration, NOAA, Bengtsson, 2020] wi D




Schradinger Unitary Cellular Automata

Joint work with Jan de Graaf and Kees van Hee. See arXiv 2406.08586 [quant-ph].

A 1D linear cellular automaton:

e The CAstate of N cells is a vector of length N: Y.
e The CAtransition is a multiplication by amatrix U: WY(t+1) = U ¥(z) .

Ina 1D Schrodinger cellular automaton for a single particle:

e ¥(x,t)is acomplex number, the value of the wave function of cell x at time .
e Probability density P(x, t) denotes the probability that the particle is in cell x at time .
e Bornrule: P(x,t) = |¥(x,t)|?, P@) = >, Plx,t)=1.

Evolution matrix U must be:

1.unitary: UUT=1,topreserve P(t)=1.
2. band structured : to support the locality required for cellular automata. w1




The 1D Schrédinger equation: continuous time and space

The Schrodinger equation is a linear partial differential equation
that governs the wave function W of a quantum-mechanical system.

In 1 dimension, for a single particle:

0¥(x, 1) _ h? *¥(x, 1)

ih + V(x)¥(x,1).
ot 2m  0x? SA Ll
e ¥(x,t)isthewave function, A is the Planck constant,
e misthe particle's mass, V (x) is a potential-energy function.

Research question:

e What if the Schrédinger equation is a continuous approximation of a discrete universe?

* What if, e.g. at the Planck scale,

guantum dynamics occurs on a discrete lattice and in discrete time steps?
e What if the universe is a cellular automaton?

161>



The 1D Schrédinger equation: discrete time and space

In discrete time (step 7) and space (cell size a), ignoring V' (x):

i2 (P, t+1) =¥, 1) = —E L(Wa+1,0)-2%(x, 1)+ P(x—1,1))

2m g2

= sHY,

Hamiltonian H = 5ﬁ,f0rN=8 cells:

2 -1 0 0 0

-1 2 -1 0 0

0 -1 2 -1 0

5_h_21 | g_l0 o -1 2 -l
2m q? o 0 0 -1 2
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The 1D Schrédinger equation: solution

The discrete-time evolution for integer time ¢, < ¢ and fixed time step =

W(@+ D)) = U|¥(),

where
" T
U = —i6H) , ith 0= —9¢,
exXp ( i ) w1 ~

and matrix exponential
6. 0)

exp (— iHI:I) = ];) H(—i@fl)k :

Evolution matrix U must be

1. unitary : UU" = 1, to preserve >, P(x,t)=1,and

2. band structured : to support the locality required for cellular automata.

Unfortunately, matrix U = exp (—i@ﬁ) is dense: all its elements are nonzero.




The 1D Schrédinger equation: split evolution

Let Hamiltonianﬁ — ﬁ() + ﬁl ,where

N 1 —1 ~ ”
H =1,8B, B=[ | 1], H, =S"'H, S.

Here @ denotes the Kronecker matrix product, 2m = N,
and matrix S is the so-called circular shift matrix. Furthermore, let

Up = exp (—i@ﬁo) , U; = exp (—i9ﬁ1) .
Then
exp (—i@ﬁ) = exp (—iH(I:IO + ﬁl))

= exp (—iGﬁl) exp (—ieﬁo) + O(6%)
= U;Up + (9(92) .
State W(x, t) can be evolved to W(x, t + 1) by multiplication with U; Up.

Matrix U = U; Uy is both unitary and band structured , so are Uy and U; .



The 1D Schrédinger equation: split evolution
U; = exp(—if) X

" cos (0) 0 0 0 0 0 0 i sin (@) |
0 cos (@) isin(0) 0 0 0 0 0
0 isin(@) cos(0) 0 0 0 0 0
0 0 0 cos (@) isin(6) 0 0 0
0 0 0 isin(f) cos(0) 0 0 0
0 0 0 0 0 cos (@) isin(0) 0
0 0 0 0 0 isin(@) cos(0) 0
| isin(0) 0 0 0 0 0 0 cos (0) |

Note: elements U [0, 7] and U;[7, 0] are nonzero < periodic boundary conditions.

This split evolution yields a so-called partitioning cellular automaton
a.k.a. a block cellular automaton [Toffoli & Margolus, 1987, pp 119-120].
These are reversible in time.



A 1D Schrddinger UCA

The cellular automaton consists of 400 cells, and has periodic boundaries.

The intial state W(x, 0) is a wavepacket.

time: 5000 tcpu: 17.37 [P-1]: 2.2E-13 time: 8000 tcpu: 5.08 |[P-1|: 3.5E-13

Out[12]:

P(x) over time
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The measured group velocity is &~ 0.26 cells per cycle.
After thousands of cycle, the dispersion of the wavepacket becomes visible.
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A 2D Schrédinger UCA

Let unitary evolution matrices Ug and Uy, denote two homogeneous one-dimensional CA,
where Uy and Uy : same {particle mass m, cell size a, time step 7}.

Kronecker product U;; & U,  defines a homogeneous two-dimensional cellular automaton :
Vec(‘I’(t+1)) = Ug ® Uy) Vec(T(t)) :
Vector vec(A) = stack the columns of matrix A on top of one another.

Atwo-step execution:Ug @ Uy = I Q@ Uy)(Uyg ® ).

1. apply U to all rows of matrix ¥(¢), with ¥/ as resuilt.
2. apply Uy to all columns of matrix ¥/, with ¥(¢ + 7) as result.

With split evolution:

Ug ® Uy

(UH 1Un ,o) ® (UV,I UV,o) (used for experiments)
(UHJ ® UVJ) ' (UH,O ® Uv,o) ("Margolus neighborhood") . =1



A 2D Schrodinger UCA: double-slit experiment

Single-particle double-slit interference. Feynman: “a phenomenon which is impossible, absolutely
impossible, to explain in any classical way, and which has in it the heart of quantum mechanics".

time=0 time=500 time=1000

time=1500 time=2000 time=2500

0
0 50 100 150 200 250 300 350 0 50 100 150 200 250 300 350 0 50 100 150 200 250 300 350

Probability density P(x, y,) = |¥(x, y,1) |*> . A
See also https:/www.youtube.com/watch?v=IgvOigKdDJg. (=)




A 2D Schradinger UCA: double-slit experiment
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Schrédinger UCA

» The discretization of space causes spatial aliasing of ¥, with intriguing effects.
E.g., phase and group velocities are periodic in wavenumber k.

¢ Next: Klein Gordon equation and Dirac equation, for relativistic behavior and spin?
Next-next: Quantum Field Theory (QFT) for multiple particles?

e UCA and QCA: a new tool for quantum-physical experiments?
Pure speculation: ultimately, a "Virtual Hadron Collider"?

e The requirements for cellular-automata computing are currently a bit of guesswork:
= a 3D cellular automaton: (16k)> cells X 1M cycles?

» & hundred 64b FLOPS per cell per cycle?

State W(x, y, z) is measured in many tens of TB
and the compute load in many Peta FLOPs.

... exascale computing.

25.1>



High performance CA computing

Network
7
SIMD SRAM SIMD SRAM SIMD SRAM
64 x 64 X 64 X 64 x 64x [ 64 x
64-wide 2MB 64-wide 2MB 64-wide 2MB
DRAM 32GB DRAM 32GB DRAM 32GB
node 0 node 1 node N-1

@1.25GHz: 1 node delivers

~ 10 TFLOPS FP64 peak performance.

Scalable to many 1000s of nodes.

network
bandwidth

DRAM
bandwidth

Goal: schedule large cellular automata:

7 high SIMD utilization, > HPCG 3%
O low network bandwidth, << InfiniBand
O low DRAM bandwidth, < 5xHBM3

6.1 D

\V4



Highly parallel CA-evolution: schedules

Case study: 2D double-slit experiment, 16kXx 16k cells. (The findings are more general.)
Partition the CA cells over a 2D grid of macrocells,, one 256X256 macrocell per SIMD unit.

A schedule is a (structured) sequence CA blocks (2X1 or 1X2 cell-pairs):
* sequential: ((x0, ¥0), (x1, ¥1))* ,

e SIMD parallel: (((xo, ¥0), (x1, y1))64)* ’

e machine parallel: ((((xo, ¥0), (x1, yl))64)64N>* :

Constraints:
1. The schedule (CA-block order) must respect e.g. (UH,l ® Uy ) . (UH,() X UV,O).

2.The 2 cells in each CA block of the schedule must "live in the same time zone".

Macrocell boundaries: if a cell-pair is split over two different machine nodes (different DRAMs)
then the cell states must be shared, across the network.

271>



Highly parallel CA-evolution:

(Ur1 ® Uy1) - (Uno ® Uyy) :
4 DRAM passes per 1 iteration.

Out[67]:

multiple passes per iteration

Operational intensity OI_:
= #operations / 1 byte-DRAM-access.
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Highly parallel CA-evolution: multiple iterations per pass

(UH,lUH,o) (%9 (UV,IUV,O) , incremental: (UH,lUH,o) X (UV,IUV,O) ,incremental®:

I pp =1 iteration per DRAM pass. I pp =4 iterations per DRAM pass.
Out[69]: Out[72]:
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Highly parallel CA-evolution

Intra-macrocell parallelism, SIMD, e.g. 64-wide.
Store "wavefront" in local SRAM to reduce DRAM bandwidth.

e Ahighwavefront = highoperationalintensity Ol. Ipp=16 = OI=28.
e (GPUs use available SRAM mostly for register files and L2 cache, limiting the OI).

Inter-macrocell parallelism, both inside a node and across nodes.

Neighbor boundary cells must be kept in sync.
e Thereis ample room for network-latency hiding.

Operational intensity OI:

= 1.75 X Ipp (iterations/ DRAM-pass)

Local SRAM needed to store the "wavefront":

21 pp cell rows per macrocell
64 X 21pp X 256 X 16 Byte.
> 1pp MB.

attainable GFLOPS /node

10°
Nvidia Hopper
101 1 1.75  28.0
107! 10° 10! 102

operational intensity [FLOPS/byte]
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Highly parallel CA-evolution: a 3D usecase in numbers

Usecase: Schrédinger UCA, 3 dimensions, (16k)? cells, 1M cycles

Memory view, assuming machine size N =16k nodes:

SIMD unit node machine note
cells 64x64x1k=4M  256M 16k3 =4T macrocell: Z = 16X to fit SRAM
macro cells 1 1M N-=16knodes
SRAM 2MB 128 MB 2TB state of wavefronts
DRAM 4GB 64TB state of cellular automaton

Time view, assuming no DRAM bottleneck (sufficient SRAM for 16x wavefront):

FP64 ops cycles time

note

per cell-pair update 28 2x2-matrix X vector, complex
per cell /iteration 84 84 50% FMA utilization

per 64 cells /iteration 84 SIMD

per macro cell /iteration 6M 5msec 1.25GHz

.. 16 k nodes wide 5msec assumes network-latency hiding

per run of 1M iterations

1.5h
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Conclusion

1. Cellular automata (CA) as a model of computation:
versatile (universal), highly regular, abundantly parallel, and strictly local.

2. However, there are not many compelling CA practical applications, yet.
Conjecture:

compelling CA benefits

lling CA applications <
i ARRTAERTS { powerful CA tools + libraries

3. Candidates for compelling CA applications include
(quantum) physical processes, chemistry, and weather/climate modelling.

4. Compelling CA benefits include, potentially 10x flops/$ and 10x flops/W, and scalability.
These stem from: high PU utilization, low DRAM bandwidth, low network bandwidth.

5. Needed: powerful CA tools + libraries, free and open-source:
for describing, analyzing, interpreting, mapping, scheduling, ..., CA,
not unlike TensorFlow and PyTorch for machine learning and artificial intelligence.
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