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What is the Architectural Challenge in Post-
Moore’s Era?
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Post Moore
?

Different Design & Execution Methodology,

Different Boundary Conditions,

Different Tradeoffs, an
d 

Different People!



Single-Flux-Quantum (SFQ) Logic
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SFQ Device & Circuit
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switch.
• Extremely low power

~1 µW gates operating at 100 GHz
•High-speed operation

>100 GHz demonstrations, etc.
•Ultrafast interconnects

Signal transmission at the speed of light 
(SFQ has no mass)Si Substrate

SiO2

Junction

Resistor
Completely Planarized Layer

SEM image by courtesy of AIST

S.	Nagasawa	et	al.	IEICE	Trans.	Electron. E97-C (2014)	132–140.
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SFQ Logic Gate (AND)

• Use “Clock” as a timing reference for synchronization.
• Every logic gate is clocked gate and has the latch function.
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Fabrication Process

• 3–10 layer process is under development in Japan, US, and China.  
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S. Nagasawa et al. IEICE E97-C (2014) 132-140.
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K. Ishida et al., VLSI 2020
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1 µm SEM image by courtesy of AIST

AIST Advanced Process, Japan
1-μm sq. JJ, Nb 9-layer + Mo

32-GHz, 6.5-mW SFQ MPU
25,403 JJs, 4.1 x 5.3 mm2
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Our Approach & Outcome
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How can SFQ Technology Contribute to 
Superconducting Quantum Computers?

300 K

4 K

20 mK

QCP  (Quantum Control Processor)

QCI  (Quantum Classical Interafce)

Qubit Chip

Host Classical Computer

20 mK

QCI
4 K

QCP  (Quantum Control Processor)

Qubit Chip

4 K circuit
(e.g., SFQ)

20 mK circuit

Host Classical Computer

QCI  (Quantum Classical Interafce)

20 mK

QCI

300 K

4 K

QCI  (Quantum Classical Interafce)

Qubit Chip

4 K circuit
(e.g., SFQ)

20 mK circuit

Host Classical Computer

QCP
4 K circuit
(e.g., SFQ)

QCP  (Quantum Control Processor)

8



A Case for NISQ Machine
Computer Architecture Letter’24
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System Level Architecture Optimization
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• Superconducting quantum computer requires many inter-
temperature cables

• Hardware complexity, heat inflow, peripheral power, etc.

• For QAOA, qubit measurement readout communication is the 
dominant

• Counter-based SFQ architecture reduces meas. Bandwidth

Ueno et al., “Inter-Temperature Bandwidth Reduction in Cryogenic QAOA Machines,” IEEE CAL, Jan.-Jul. 2024.
Ueno et al., “SFQ counter-based precomputation for large-scale cryogenic VQE machines,” DAC WIP Poster, July 2024.



Towards Fault-Tolerant Quantum Computing
ISCA’22&ISCA’23
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How SFQ Technology Contribute to 
Superconducting Quantum Computers?
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XQsim: Research Overview
Full QCP μarchitecture QCP modeling tool 10+K qubit QCP arch.

4K
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-

Detailed RTL 
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modeling & simulation
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Ilkwon Byun, et al., "XQsim: Modeling Cross-Technology Control Processors for 10+K Qubit Quantum Computers," ISCA, June 2022.
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XQ-estimator: Validation
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direction logic inside EDU

Layout of PF updater inside PFU

• SFQ model accurately predicts the frequency and power
− Compared with the post-layout analysis using AIST 1.0µm process library
− Validated with the circuits in various QCP units (e.g., EDU, PFU)

Ilkwon Byun, et al., "XQsim: Modeling Cross-Technology Control Processors for 10+K Qubit Quantum Computers," ISCA, June 2022.
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XQ-simulator: Overview
• Run simulation to report scalability metrics and manageable qubit scale
• Integrate a quantum simulator for the functionally correct simulation

Quantum program
(our QISA)

Temperature &
Technology config.

Freq. & Power 
from XQ-estimator

XQ-simulator

QCP 
µarch

Scalability metrics

Inst. BW

EDU latency

300K-4K 
data transfer

4K device 
power

Error model
config.

Quantum simulator
(e.g., Stim)

PQ inst.
(from TCU)

PQ meas.
(to EDU/LMU)

Logical qubit
state distribution

+

Ilkwon Byun, et al., "XQsim: Modeling Cross-Technology Control Processors for 10+K Qubit Quantum Computers," ISCA, June 2022.
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→ 4,600→ 1,700

10+K qubit QCP design: Summary

Bottleneck: Slow EDU

µarch #1: Fast EDU

Qubit scale: < 250 

Bottleneck: 4K device power

µarch #2 & #3: Low-power PSU & TCU

Qubit scale: 970 

Guideline #1:
Move only 
TCU & PSU
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300K-4K
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With thorough analyses using XQsim, we could provide directions for 
designing a 10+K qubit QCP using SFQ technology!
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Guideline #2:
Move EDU

Bottleneck: 4K device power

µarch #4: Low-power EDU

Qubit scale: 8,100 → 59,000
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Ilkwon Byun, et al., "XQsim: Modeling Cross-Technology Control Processors for 10+K Qubit Quantum Computers," ISCA, June 2022.
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Different Design & Execution Methodology,

Different Boundary Conditions,

Different Tradeoffs, an
d 

Different People!
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Cryogenic temperature stages,

Different Tradeoffs, an
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Cryogenic temperature stages,

Inflow/Circuit power,

Different People!

>50 GHz pulse logic,        
         

         
   

Cryogenic temperature stages,

Inflow/Circuit power,

Architecture, Theory, SFQ Device



Message
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Need A-Z Co-Design for Emerging Device 
Computing!

Hardware/Software
(Architecture)Device/Material

Theory/Physics

Closs-layer interaction is required for 
next generation computing with emerging devices!
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Different Design & Execution Methodology,

Different Boundary Conditions,

Different Tradeoffs, an
d 

Different People! → MPSoC!


