

Proposal of a Hyperparameter Optimization Method for Neural Networks

July 8, 2024

Masaharu Imai (m_imai@kcg.edu)

The Kyoto College of Graduate Studies for Informatics (KCGI), and ASIP Solutions, Inc.

Agenda

Introduction

Hyperparameters of CNN Hyperparameter Optimization Proposal of Cross-Search Method Experimental Results Conclusion & Future Work References

Convolutional Neural Network

2024/7/8

Copyright C kcg.edu. All Rights Reserved.

kcg.edu

Motivation for this research

Neural networks for machine learning are becoming larger and deeper (such as LLM)

Cloud servers consume large amounts of electric energy

Hyperparameter (HP) Optimization is crucial to obtain more intelligent ML systems with less energy consumption

Agenda

Introduction

Hyperparameters of CNN

Hyperparameter Optimization

- Proposal of Cross-Search Method
- Experimental Results
- Conclusion & Future Work

References

Hyperparameters (HP) of CNN

In Convolutional Neural Networks (CNNs), there are many hyperparameters that you can tune to optimize the performance of the model.

□ Kind of parameters □ Hard type

Soft type

Hard Type HP Examples

Number of Filters (Kernels) □ Filter Size (Dimensions) □ Stride Padding Pooling Size and Types Architecture

Soft Type HP Examples

Learning Rate Number of Epochs □ Batch Size Dropout Rate Regularization Parameters Activation Function □Optimizer, etc.

HP Optimization

Challenging Issue due to the following reasons:

- Vast Parameter Space
 - Numerous Combinations
 - Interdependencies of Parameters
- Execution Time and Cost
 - Expensive and Time-consuming Experiments
 - Probabilistic Behavior of Component

Complex Interactions

- Parameter Interactions
- Global Optimization Challenge

Agenda

Introduction

- Hyperparameters of CNN
- Hyperparameter Optimization
- Proposal of Cross-Search Method
 Experimental Results
 Conclusion & Future Work
- References

HP Optimization Methods

Blackbox

Optimization using objective function values only (current mainstream)

Gray box

Utilize auxiliary information useful for optimization derived from the characteristics of the target problem(current trend)

Others

Gradient method, Reinforcement Learning (not major)

Agenda

Introduction

- Hyperparameters of CNN
- Hyperparameter Optimization

Proposal of Cross-Search Method

- Experimental Results
- Conclusion & Future Work
- References

Observations (1)

Optimizing the number of neurons in each layer of a Neural Network has the following ease and difficulties

Ease

- The shape of learning curves (Loss, Accuracy) are roughly unimodal
- Difficulties
 - Computation time for the learning is dominant
 The learning curves are superimposed on the stochastic error

Accuracy vs Hidden Layer Size

Initially, Accuracy increases as the number of neurons increases.

When the number of neurons exceeds a certain value, Accuracy decreases. (<u>Overlearning</u>)

The graph is roughly unimodal

Observations (2)

Full Grid Search can find the global optimum HP combination, but timeconsuming and not practical

Hill climbing search is one of the best and easiest methods to understand, but it may fail to find the Global Optimum Solution

□Any good idea?

3 Layer Neural Network

Solution Space and Global Peak

"Noise" makes Local Peaks

Proposals

Use of the Logarithmic Spacing Grid
 Use straight forward search method
 Full Cross-Search Method
 Partial Cross-Search Method

Logarithmic Spacing Grid

Copyright C kcg.edu. All Rights Reserved.

kcg.edu

Full Cross-Search Example

Agenda

Introduction

- Hyperparameters of CNN
- Hyperparameter Optimization
- Proposal of Cross-Search Method

Experimental Results

Conclusion & Future WorkReferences

Target CNN

Application: Hand Written Digits recognition

Dataset: MNIST

- □Input: 28 x 28 x 8bit grayscale image
- □Output: 0, 1, 2, …, 9
- 60,000 learning data + 10,000 test data

Part of MNIST Dataset

Grayscale image 28 x 28 bytes Data type: uint8

Outline of Optimum Solution

Known Optimum Solution

- $\square # neurons in L1 = 128$ $\square # neurons in L2 = 4,096$
- Accuracy = 0.9803

Relative Computation Time #of multiplication op's / learning cycle

 $T(N_{in}, N_1, N_2, N_{out}) = N_{in} \times N_1 + N_1 \times N_2 + N_2 \times N_{out}$

 $\Box T(28 \times 28, 128, 4096, 10) = 43,672,128$

2024/7/8

2024/7/8

Copyright © kcg.edu. All Rights Reserved.

Global and Local peaks

Global Optimum Solution

Full Cross-Search Example

Partial Cross-Search

- □ Parameter "Limit" (= 1, 2, 3, …)
- Continues search Limit more steps after a local peak was found
- As the Limit increases, Partial Cross-Search returns a better solution, but longer computation time is required

Partial Cross (Limit= $1 \sim 4$)

2024/7/8

Copyright © kcg.edu. All Rights Reserved.

kcg.edu

0.980

0.975

0.970

0.965

0.960

0.955

0.950

0.980

0.975

- 0.970

0.965

0.960

0.955

0.950

Experimental Results

Search Algorithm	Hyper Param	Accuracy	Diff.	Relative Comp. Time
Full Search	(128, 4096)	0.9803	0.0000	1.0
Hill Climbing	(256, 128)	0.9792	0.0011	0.075
Full Cross (L2) Partial Cross (L2)	(128, 4096)	0.9803	0.0000	0.273 0.257
Full Cross (L1) Partial Cross (L1)	(256, 128)	0.9792	0.0011	0.280 0.063
Partial Cross (L2)	(128, 64)	0.9791	0.0012	0.031
Partial Cross (L)	(64, 32)	0.9789	0.0014	0.034

2024/7/8

Computation Time vs Accuracy

2024/7/8

Distribution of Accuracy

□ Top 8 Acc values **D**0.9803 – Full Grid Full Cross **D**0.9793 □0.9792 → Hill Climb **Full Cross 0**.9792 **D**0.9791 — Partial Cross **D**0.9790 □0.9789← Partial Cross **D**0.9789

Agenda

Introduction

- Hyperparameters of CNN
- Hyperparameter Optimization
- Proposal of Cross-Search Method
- Experimental Results
- Conclusion & Future Work

References

Conclusion (1)

Accuracy

- Accuracy of Full Cross-Search is comparable to Full Grid
- Accuracy of Partial Cross-Search is comparable to Hill Climb

Computation Time

- Full Cross-Search is about 3 times as fast as Full Grid
- Partial Cross-Search with limit=1 is the fastest, about 2.5 times as fast as Hill Climb
- The accuracy of the solutions obtained by the Partial Cross-Search is high enough
- Partial Cross-Search is <u>scalable and cost-effective</u>

Conclusion (2)

Full / Partial Cross-Search are suitable for Optimization of HPs with <u>continuous</u> <u>quantity</u>

Suitability for Parallel Computation

Full Grid and Full Cross-Search have good Parallelism

Hill Climb Search has limited parallelism (only "neighbors" of candidate combination of HP can be computed in parallel)

Future Work

- Effect of the search Start Point assessment
- Application of Full / Partial Cross to other HPs and larger neural network
- Comparison with other HP optimization methods (Random Search, Bayesian, etc.)
- Validity of learning assessment results (accuracy, loss, etc.) using early learning epochs

Accuracy vs. Epochs

2024/7/7

Agenda

Introduction

Hyperparameters of CNN Hyperparameter Optimization Proposal of Cross-Search Method Experimental Results Conclusion & Future Work

References

References

□ Y. Ozaki, M. Nomura, and M. Onishi,

"Hyperparameter Optimization Methods: Overview and Characteristics," IEICE Trans. D, Vol. J103-D, No. 9, pp.615-631, 2020.

Yann LeCun, Corinna Cortes, Christopher J.C. Burges, THE MNIST DATABASE of handwritten digits; http://yann.lecun.com/exdb/mnist/

2024/7/8