

A Novel Adaptive Quantization Methodology for 8-bit Floating-Point Training

Norbert Wehn

AI Memory Challenge

Model Size versus AI accelerator memory capacity

Memory Bandwidth

By 2030, generative AI will increase demand for wafers significantly.

⁵NAND = "not-and," a type of memory.

Source: World fab forecast, SEMI, December 12, 2023; McKinsey analysis

Source: McKinsey, March 2024

DRAM increase due to generative AI larger than logic increase

AI Memory Challenges - Energy

Oneusticu		Picojoules per Operation						
	Operation	45 nm	7 nm	45/7				
	Int 8	0.03	0.007	4.3				
	Int 32	0.1	0.03	3.3				
+	BFloat 16		0.11					
	IEEE FP 16	0.4	0.16	2.5				
	IEEE FP 32	0.9	0.38	2.4				
	Int 8	0.2	0.07	2.9				
	Int 32	3.1	1.48	2.1				
×	BFloat 16		0.21					
	IEEE FP 16	1.1	0.34	3.2				
	IEEE FP 32	3.7	1.31	2.8				
	8 KB SRAM	10	7.5	1.3				
SRAM	32 KB SRAM	20	8.5	2.4				
	1 MB SRAM ¹	100	14	7.1				
GeoMe	an ¹			2.6				
		Circa 45 nm	Circa 7 nm					
DRAM	DDR3/4	1300 ²	1300 ²	1.0				
DRAW	HBM2		250-450 ²					
	GDDR6		350-480 ²					

Table 2. Energy per Operation: 45 nm [16] vs 7 nm. Memory is pJ per 64-bit access.

Jouppi, et al. "Ten lessons from three generations shaped google's tpuv4i: Industrial product." In 2021 ACM/IEEE 48th Annual International Symposium on Computer Architecture (ISCA), pp. 1-14. IEEE, 2021.

Training compute of notable models

F EPOCH AI

R

VICROELECTRONIC

Training CHAT-GPT3 (175B parameters)

- 10,000 Nvidia V100 Cores (Microsoft Datacenter)
- 15 days training
- 1287 MWh: 552t CO₂
- Equivalent ~ 3 jet place CO₂ round trips San Francisco/New York
- Large source of energy consumption is off-chip memory access

Nvidia GPUs Throughput

- Large portion of GPU's throughput increase by utilizing low bit-width compute cores
- GPUs equipped with cores for different data formats (int8, int4, FP4, FP8, FP16, FP32, FP64) → large area
- Inference: low precision data formats well investigated, but not for training

Low Precision Formats for DNN Training

	Exp- Size	Mantissa Size	Min	Max	80 70				
FP32	8	23	1.40e-45	3.0e38	60 (%)/{50				
FP16	5	10	5.96e-8	6.5e4	00 40				
BFloat16	8	7	1.0e-38	1.0e38	V 20				
TinyFloat12	7	4	1.35e-20	8.64e18	10 0				
FP8	5	2	3.09e-5	6.0e4		VGG16(Tiny ImageNet)	ResNet18 (Tiny ImageNet)	VGG16 (CIFAR-100)	ResNet18(CIFAR-100
					_		■ ED32 ■ ED16		

- Mantissa width has minimal impact on accuracy (FP32, TinyFlaot)
- Significant accuracy drop with 5-bit Exp (FP16)
- Exponent width can not be reduced due to the dynamic range demands of DNN training

8-bit Floating Point Quantization (introduced by IBM)

- MobileNet backward pass activations range: 1.0e-40 ~5.0e-1
- FP8 range cannot cover the range requirement of DNN training
- Possible solution: scaling data to FP8 range

Challenges

- FP8 state-of-the-art relies on scaling data to the FP8 representable region using offline experiments with the trained model
- NVIDIA presents online scaling in the latest GPUs, but the details of the methodology is not publicly available
- Scaling operation requires multiplication and division

Adjusting FP8 data format

 $FP Value = (-1^{Sign}) * 1.Mantissa * 2^{(Exponent-Bias)}$

 $Bias = 2^{(ExponentSize-1)} - 1$

Idea: consider *Bias* as a variable instead of constant=15

- Instead of scaling we shift the data
- No multiplication/division necessary

How to calculate the *bias* online?

Online Bias Calculation

- Data range remains quite stable -> initial epochs are sufficient for bias calculations
- Median is used for bias calculations since it has robustness to outliers

Median Value	Bias	Median Value	Bias	Median Value	Bias
64	10	2	15	0.0625	20
32	11	1	16		
16	12	0.5	17		
8	13	0.25	18		
4	14	0.125	19	0.0000305175	31

Warm-Up phase with FP32 or FP16 to calculate biases

Implementation and Compatibility with HW Platforms

Online monitoring and compression/decompression integrated into the DRAM memory controller

Memory Controller

- Low complexity median calculation unit
- No modification of compute core necessary

ICROFI ECTRONI

Results/Accuracy

			aming accura							
Application	DataSet	DNN Model	Accuracy Measured in	Number of Training Epochs	FP32	FP16	BFloat16	FP8 (This Worl		
Natural Language Processing	Multi30k	Transformer-base	BLEU	250	33.2	29.6	32.8	30.8		
	IMDB review	LSTM	%	15	88.20	85.10	88	87.31		
	$\operatorname{PennTreeBank}$	LSTM	PPL	35	104.4	107.7	104.6	109.2		
		DenseNet	%	65	80.20	32	80	79.10		
		$\operatorname{ResNet18}$	%	65	71.60	41	71.50	71		
	Cifar100	${ m ResNet101}$	%	65	79.78	68.10	79.70	78.80		
		VGG16	%	65	68.60	24	67.70	67		
		GoogleNet	%	65	78.10	75	78	77.03		
		ResNet18	%	100	93.02	91.80	93	93		
Image Classification		VGG16	%	100	93.64	92.10	93.60	93.25		
Classification	Cifar10	GoogleNet	%	100	95	91	95	94.60		
		$\operatorname{ResNet101}$	%	100	95.50	89.40	95.50	94.80		
		MobileNet-V2	%	50	52.30	37.20	52	51.10		
		VGG16	%	50	52.10	45.40	52	52		
	TinyImageNet	ResNet18	%	50	45	35	45	44.60		
		GoogleNet	%	50	50.70	12	50.40	50		

DNN training accuracy results comparison.

Accuracy comparable with FP32 data format

Results/Energy

SCALE-Sim Config	Data Width	Type	$\begin{array}{c} \text{DDR3-DIMM} \\ \hline \text{DQ} = 64, \text{DataRate} = 1866 \\ \hline \text{Time(ms)} \text{Energy(mJ)} \end{array}$		DDR4-DIMM $DQ = 64, DataRate=2133$ $Time(ms) Energy(mJ)$		
TPU-like	8-bit	F B G	$1.16 \\ 1.18 \\ 1.03$	$2.14 \\ 2.17 \\ 1.95$	$0.68 \\ 0.69 \\ 0.63$	$1.53 \\ 1.58 \\ 1.23$	
$#MACs:128 \times 128$ on-chip:36MB	32-bit	F B G	$\begin{array}{c} 4.13 \\ 4.13 \\ 4.44 \end{array}$	7.32 7.35 8.96	$2.49 \\ 2.51 \\ 2.83$	$5.35 \\ 5.47 \\ 5.38$	
Qualcomm-like	8-bit	F B G	$1.01 \\ 1 \\ 1.07$	$ 1.93 \\ 1.94 \\ 2.02 $	$0.6 \\ 0.61 \\ 0.63$	$1.44 \\ 1.47 \\ 1.31$	
$#MACs:64 \times 64$ on-chip:9MB	32-bit	F B G	$4.16 \\ 4.15 \\ 4.35$	5.13 5.21 4.77	$2.39 \\ 2.4 \\ 2.68$	7.11 7.09 8.49	

DRAM energy saving 3x compared to FP32

Results/Energy

SCALE-Sim Config	$\begin{array}{ccc} \text{DDR3-DIMM} \\ \text{SCALE-Sim} & \text{Data} \\ \text{Config} & \text{Width} & \text{Type} & \frac{\text{DQ} = 64, \text{DataRate}}{\text{Time(ms)} & \text{Energ}} \end{array}$		3-DIMM DataRate=1866 Energy(mJ)	$\begin{array}{c} \text{DDR4-DIMM} \\ \hline \text{DQ} = 64, \text{ DataRate} = 213 \\ \hline \text{Time(ms)} \text{Energy(mJ)} \end{array}$		
TPU-like	8-bit	F B G	$1.16 \\ 1.18 \\ 1.03$	$2.14 \\ 2.17 \\ 1.95$	$0.68 \\ 0.69 \\ 0.63$	$1.53 \\ 1.58 \\ 1.23$
$#MACs:128 \times 128$ on-chip:36MB	32-bit	F B G	$\begin{array}{c} 4.13 \\ 4.13 \\ 4.44 \end{array}$	7.32 7.35 8.96	$2.49 \\ 2.51 \\ 2.83$	$5.35 \\ 5.47 \\ 5.38$
Qualcomm-like	8-bit	F B G	$1.01 \\ 1 \\ 1.07$	$1.93 \\ 1.94 \\ 2.02$	$0.6 \\ 0.61 \\ 0.63$	$1.44 \\ 1.47 \\ 1.31$
$#MACs:64 \times 64$ on-chip:9MB	32-bit	F B G	$4.16 \\ 4.15 \\ 4.35$	5.13 5.21 4.77	$2.39 \\ 2.4 \\ 2.68$	7.11 7.09 8.49

DRAM energy saving 3x compared to FP32

11

Special Thanks to the members of my Al group: Mohammad Hassani Sadi, Chirag Sudarshan

For more information

Novel Adaptive Quantization Methodology for 8-bit Floating-Point DNN Training

M.H. Sadi, C. Sudarshan, N. Wehn

Springer Journal on Design Automation for Embedded Systems, 2024

https://eit.rptu.de/fgs/ems/start