/\~"\ N\~
MPSOC'17 [mmndll MPS0C'22 [

Scaling a Shared Memory Manycore

X

o

RAN GINOSAR

g
TECHNION

Israel Institute

o~ of Technology
e

°R/\MON.SP/\CE

Contents

* Shared Memory Manycore

e Research Questions:
e Scale Up
e Scale Out

Shared Memory Manycore

Scheduler

Many-to-many Interconnect

MIIM|IM|IM|IM||M]||M||M

Shared Memory Manycore

Scheduler
p p p p p p
PM PM PM PM PM PM

—|Instruction Cache

Many-to-many Interconnect

M

M

M

\Y

M

M

Single
Address
Space

e
{5 C&@é
Q

Shared Memory Manycore

Scheduler .
p
RC64 eN\eﬂ(\
P P P P P P y
A R B e
—Instruction Cache
/ D D D D D S
Sequential _%
task Many-to-many Interconnect e
codes

ve

N\

M

M

M

\Y

M

M

Single
Address

Space

Shared Memory Manycore

Sequential

task

codes

N\

ve

Scheduler

Program
flow graph
{ task, before task, }

RC64

A

P

—|Instruction Cache

Many-to-many Interconnect

e
Cngq6
Q

M

M

M

\Y

M

M

Single
Address

Space

Shared Memory Programming Model

e “Software is king”

 Main purpose of shared memory architecture:
ENABLE SIMPLE SOFTWARE

* Programming model resembles PRAM-CREW
* Parallel Random Access Machine—Concurrent Read, Exclusive Write

* Single program execution (manycore # multicore)
* No need for cache coherency

* Sequential tasks executed by cores
Task-dependency-graph executed by scheduler [1]

—~
M ° [1] R. Ginosar et al., "RC64: High performance rad-hard manycore," 2016 IEEE Aerospace Conference, doi: 10.1109/AER0.2016.7500697.

Shared Memory Observations

* Memory read = cache line fetch

 Memory write = cache line update / word update
* Write-back vs. write-through

* Memory access time is unknown and it varies
* No data locality is assumed

* All memory banks are perceived similarly close (similarly far) from every
processor

* No data locality is allowed !

Advantages

* Simple architecture
* Simple to program
* Simple to compile
* Simple to implement

« Simple to scale €< subject of this talk
* High CPU utilization

* High power efficiency

Scale Up

Baseline

Scheduler 64

Cores
P P P P P P
s [e O s A s O - O
mocs SN v SO v O s N s A

Many-to-many Interconnect

256

. banks

M[MI[M|IM|IM[IM[IM{[|M[{M|[M 4 MB

1. Scale Up: more of the same

Scheduler
p p p p p
PM PM PM PM PM

Many-to-many Interconnect

M

M

M

\Y

M

M

12

2. Scale Up: Acceleration—per core or per chip ?

Vector
unit per
core ?

Scheduler
o)
P P P P +o %
PV PV PV PV 555
| | | | >
D% D% D% D%

Many-to-many

Separate

M

M

\Y

Accelerators
?

3. Scale Up: GALS (transparent) Clusters ?

NIVINOA MO0

Scheduler
P P P P P P
PM PM PM PM PM PM
B B E B E 1S
DS DS DS DS DS DS
Interconnect m Interconnect
M M M M M M

NIVINOAQ MO0

RECALL:
* Memory access time is unknown and it varies

* No data locality is assumed
* All memory banks are perceived similarly close (similarly far) from every processor

* No data locality is allowed |
F F F F F
O PV PM PM PM PM O
O B 1S 1S 1S 1S O
S DS DS DS DS DS S
o o
))
O O
< <
> >
= =
\Y \Y

Scale Up Evaluation ?

 Architecture level simulations

 Which benchmarks?

CNN & LLM inference

FFT

Matrix Multiply

Optional 4G/5G codec: Turbo + LDPC

16

Scale Out

Multiple chips
and/or
Multiple chiplets in same package

17

Scale Out

* Maintain shared memory architecture over multiple chips/chiplets
* “Architecture” = the view presented to software
» Software should see a “single address space” shared over multiple chips/chiplets

RECALL:
* Memory access time is unknown and it varies
* No data locality is assumed

* All memory banks are perceived similarly close (similarly far) from every processor
* No data locality is allowed !
CHALLENGE
* Transparent & efficient access to remote memory

18

ve

Transparent Access to Remote Memory

* Already addressed in large compute systems—datacenters & HPC

e Alternatives:
1. Non-transparent message passing (MP)

e SW issues SEND() & RECV(), handled by OS = context switch & long latency
2. RDMA (infiniband, RoCE, NVlink)

 SW employs LOAD / STORE, HW catches and executes = shorter latency
3. Hybrid MP/RDMA

 Two SW layers: Application (e.g. Al training) assumes shared memory,
Framework selects MP or RDMA

* Too complex for our purpose

19

Lower Complexity Shared Memory

* More suitable for small systems (Edge, embedded)

 So far, we have used MP

* Shared memory within a chip, distributed computing among multiple
chips

e Extension of GALS is possible and “easy”
* Drawback: wide datapath between chips = too many I/O pins

* |nstead, use SERDES and High-Speed Serial Links (HSSL)

20

CLOCK DOMAIN

mﬁ\/éam

CLOCK DOMAIN

RECALL: GALS within a chip

Study distributed scheduler

Extend to Multiple Chips/Chiplets /

CHIP/chiplet [% CHIP/chiplet
= | E v
O 10
o o
N N
iy e
O 10
o o

Actually, a “transparent” network is needed
CHIP/chiplet CHIP/chiplet

)

N
\ 4

SE(GEN
NEIGEN

|0J1U0D) JJOMIBN
o
|0J3U0D) JJOMIDN

N\

S3dY3S
V
NEIGLEN

N

address mapping
to network destinations

Network is needed to scale beyond 2 chips/chiplets

/ Vi y/

C)

NoC extended to NoC* (spanning multiple chips/chiplets)

Scale Out Evaluation 7

* Architecture level simulations (same as for Scale Up Evaluation)

 Which benchmarks?

CNN & LLM inference

FFT

Matrix Multiply

Optional 4G/5G codec: Turbo + LDPC

25

Summary

* Shared memory manycore is “simple”
* As aresult, it has been shown useful
* Now itis time to scale

e Research questions:
* How to scale up?
e How to scale out?

* How to evaluate scaling?

26

~wr

¥

TECHNION

Israel Institute
of Technology

°R/\MON.SP/\CE

27

