
Scaling a Shared Memory Manycore

RAN GINOSAR

1



Contents
• Shared Memory Manycore

• Research Questions:

• Scale Up

• Scale Out

2



Shared Memory Manycore

3

Many-to-many Interconnect

Scheduler

M

P

M M MM M MM M M

P P PP P
RC64



Shared Memory Manycore

4

Many-to-many Interconnect

Scheduler

M

P
PM
I$
D$

M M MM M MM M M

P P P
PM
I$
D$

PM
I$
D$

PM
I$
D$

P P
PM
I$
D$

PM
I$
D$

Single
Address
Space

Instruction Cache

RC64



Shared Memory Manycore

5

Many-to-many Interconnect

Scheduler

M

P
PM
I$
D$

M M MM M MM M M

P P P
PM
I$
D$

PM
I$
D$

PM
I$
D$

P P
PM
I$
D$

PM
I$
D$

Single
Address
Space

Instruction Cache

Sequential
task
codes

RC64



Shared Memory Manycore

6

Many-to-many Interconnect

Scheduler

M

P
PM
I$
D$

M M MM M MM M M

P P P
PM
I$
D$

PM
I$
D$

PM
I$
D$

P P
PM
I$
D$

PM
I$
D$

Single
Address
Space

Instruction Cache

Sequential
task
codes

Program
flow graph
{ taskX before taskY }

RC64



Shared Memory Programming Model
• “Software is king”

• Main purpose of shared memory architecture:
ENABLE SIMPLE SOFTWARE

• Programming model resembles PRAM-CREW
• Parallel Random Access Machine—Concurrent Read, Exclusive Write

• Single program execution (manycore ≠ multicore)

• No need for cache coherency

• Sequential tasks executed by cores
Task-dependency-graph executed by scheduler [1]

7
[1]   R. Ginosar et al., "RC64: High performance rad-hard manycore," 2016 IEEE Aerospace Conference, doi: 10.1109/AERO.2016.7500697.



Shared Memory Observations
• Memory read = cache line fetch

• Memory write = cache line update / word update
• Write-back vs. write-through

• Memory access time is unknown and it varies

• No data locality is assumed
• All memory banks are perceived similarly close (similarly far) from every 

processor

• No data locality is allowed !

8



Advantages
• Simple architecture

• Simple to program

• Simple to compile

• Simple to implement

• Simple to scale  subject of this talk

• High CPU utilization

• High power efficiency

9



10

Scale Up



Baseline

11

Many-to-many Interconnect

Scheduler

M

P
PM
I$
D$

M M MM M MM M M

P P P
PM
I$
D$

PM
I$
D$

PM
I$
D$

P P
PM
I$
D$

PM
I$
D$

64
Cores

24 KB

256 
banks
4 MB

RC64



1. Scale Up: more of the same 

12

Many-to-many Interconnect

Scheduler

M

P
PM
I$
D$

M M MM M MM M M

P P P
PM
I$
D$

PM
I$
D$

PM
I$
D$

P P
PM
I$
D$

PM
I$
D$

More 
Cores  ?

Larger 
Cache ?

Larger 
Shared 

Memory ?



2. Scale Up: Acceleration—per core or per chip ?

13

Many-to-many Interconnect

Scheduler

M

P
PM
I$
D$

M M MM M MM M M

P P P
PM
I$
D$

PM
I$
D$

PM
I$
D$

P P
PM
I$
D$

PM
I$
D$

Vector 
unit per 
core ? M

atM
u

l
Po

o
lin

g
So

ftm
ax

Separate 
Accelerators 

?



3. Scale Up: GALS (transparent) Clusters ? 

14

Interconnect

Scheduler

M

P
PM
I$
D$

M M MM M MM M M

P P P
PM
I$
D$

PM
I$
D$

PM
I$
D$

P P
PM
I$
D$

PM
I$
D$

Interconnect

C
LO

C
K

 D
O

M
A

IN

C
LO

C
K

 D
O

M
A

IN

CDC



2. Scale Up into GALS (transparent) Clusters ? 

15

Interconnect

Scheduler

M

P
PM
I$
D$

M M MM M MM M M

P P P
PM
I$
D$

PM
I$
D$

PM
I$
D$

P P
PM
I$
D$

PM
I$
D$

Interconnect

C
LO

C
K

 D
O

M
A

IN

C
LO

C
K

 D
O

M
A

IN

CDC

RECALL:

• Memory access time is unknown and it varies

• No data locality is assumed
• All memory banks are perceived similarly close (similarly far) from every processor

• No data locality is allowed !



Scale Up Evaluation ?
• Architecture level simulations

• Which benchmarks?
• CNN & LLM inference
• FFT
• Matrix Multiply
• Optional 4G/5G codec: Turbo + LDPC 

16



17

Scale Out

Multiple chips
and/or
Multiple chiplets in same package



Scale Out
• Maintain shared memory architecture over multiple chips/chiplets

• “Architecture” = the view presented to software

• Software should see a “single address space” shared over multiple chips/chiplets

RECALL:

• Memory access time is unknown and it varies

• No data locality is assumed
• All memory banks are perceived similarly close (similarly far) from every processor

• No data locality is allowed !
CHALLENGE

• Transparent & efficient access to remote memory

18



Transparent Access to Remote Memory
• Already addressed in large compute systems—datacenters & HPC

• Alternatives:
1. Non-transparent message passing (MP)

• SW issues SEND() & RECV(), handled by OS → context switch & long latency

2. RDMA (infiniband, RoCE, NVlink)

• SW employs LOAD / STORE, HW catches and executes → shorter latency 

3. Hybrid MP/RDMA

• Two SW layers: Application (e.g. AI training) assumes shared memory, 
Framework selects MP or RDMA

• Too complex for our purpose
19



Lower Complexity Shared Memory  

• More suitable for small systems (Edge, embedded)

• So far, we have used MP 
• Shared memory within a chip, distributed computing among multiple 

chips

• Extension of GALS is possible and “easy”
• Drawback: wide datapath between chips → too many I/O pins

• Instead, use SERDES and High-Speed Serial Links (HSSL)

20



RECALL: GALS within a chip

21

Interconnect

Scheduler

M

P
PM
I$
D$

M M MM M MM M M

P P P
PM
I$
D$

PM
I$
D$

PM
I$
D$

P P
PM
I$
D$

PM
I$
D$

Interconnect

C
LO

C
K

 D
O

M
A

IN

C
LO

C
K

 D
O

M
A

IN

CDC

w
id

e



Extend to Multiple Chips/Chiplets

Interconnect

Scheduler

M

P
PM
I$
D$

M M M M

P P
PM
I$
D$

PM
I$
D$

CHIP/chiplet

SER
D

ES
SER

D
ES

Interconnect

Scheduler

M

P
PM
I$
D$

M M M M

P P
PM
I$
D$

PM
I$
D$

CHIP/chiplet

SER
D

ES
SER

D
ES

Study distributed scheduler



Actually, a “transparent” network is needed

Interconnect

Scheduler

M

P
PM
I$
D$

M M M M

P P
PM
I$
D$

PM
I$
D$

SER
D

ES
SER

D
ES

Interconnect

Scheduler

M

P
PM
I$
D$

M M M M

P P
PM
I$
D$

PM
I$
D$

SER
D

ES
SER

D
ESN

etw
o

rk C
o

n
tro

l

N
etw

o
rk C

o
n

tro
l

address mapping 
to network destinations

CHIP/chiplet CHIP/chiplet



Network is needed to scale beyond 2 chips/chiplets

NoC extended to NoC* (spanning multiple chips/chiplets)



Scale Out Evaluation ?
• Architecture level simulations (same as for Scale Up Evaluation)

• Which benchmarks?
• CNN & LLM inference
• FFT
• Matrix Multiply
• Optional 4G/5G codec: Turbo + LDPC 

25



Summary

• Shared memory manycore is “simple”

• As a result, it has been shown useful

• Now it is time to scale

• Research questions: 

• How to scale up?

• How to scale out?

• How to evaluate scaling?

26



27

www.ramon-chips.com www.ee.technion.ac.il/~ran


