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Shared Memory Programming Model

e “Software is king”

 Main purpose of shared memory architecture:
ENABLE SIMPLE SOFTWARE

* Programming model resembles PRAM-CREW
* Parallel Random Access Machine—Concurrent Read, Exclusive Write

* Single program execution (manycore # multicore)
* No need for cache coherency

* Sequential tasks executed by cores
Task-dependency-graph executed by scheduler [1]

—~
M ° [1] R. Ginosar et al., "RC64: High performance rad-hard manycore," 2016 IEEE Aerospace Conference, doi: 10.1109/AER0.2016.7500697.



Shared Memory Observations

* Memory read = cache line fetch

 Memory write = cache line update / word update
* Write-back vs. write-through

* Memory access time is unknown and it varies
* No data locality is assumed

* All memory banks are perceived similarly close (similarly far) from every
processor

* No data locality is allowed !




Advantages

* Simple architecture
* Simple to program
* Simple to compile
* Simple to implement

« Simple to scale €< subject of this talk
* High CPU utilization

* High power efficiency
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1. Scale Up: more of the same
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2. Scale Up: Acceleration—per core or per chip ?

Vector
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3. Scale Up: GALS (transparent) Clusters ?
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RECALL:
* Memory access time is unknown and it varies

* No data locality is assumed
* All memory banks are perceived similarly close (similarly far) from every processor

* No data locality is allowed |
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Scale Up Evaluation ?

 Architecture level simulations

 Which benchmarks?

CNN & LLM inference

FFT

Matrix Multiply

Optional 4G/5G codec: Turbo + LDPC
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Scale Out

Multiple chips
and/or
Multiple chiplets in same package
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Scale Out

* Maintain shared memory architecture over multiple chips/chiplets
* “Architecture” = the view presented to software
» Software should see a “single address space” shared over multiple chips/chiplets

RECALL:
* Memory access time is unknown and it varies
* No data locality is assumed

* All memory banks are perceived similarly close (similarly far) from every processor
* No data locality is allowed !
CHALLENGE
* Transparent & efficient access to remote memory
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Transparent Access to Remote Memory

* Already addressed in large compute systems—datacenters & HPC

e Alternatives:
1. Non-transparent message passing (MP)

e SW issues SEND() & RECV(), handled by OS = context switch & long latency
2. RDMA (infiniband, RoCE, NVlink)

 SW employs LOAD / STORE, HW catches and executes = shorter latency
3. Hybrid MP/RDMA

 Two SW layers: Application (e.g. Al training) assumes shared memory,
Framework selects MP or RDMA

* Too complex for our purpose
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Lower Complexity Shared Memory

* More suitable for small systems (Edge, embedded)

 So far, we have used MP

* Shared memory within a chip, distributed computing among multiple
chips

e Extension of GALS is possible and “easy”
* Drawback: wide datapath between chips = too many I/O pins

* |nstead, use SERDES and High-Speed Serial Links (HSSL)

20



CLOCK DOMAIN
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RECALL: GALS within a chip




Study distributed scheduler

Extend to Multiple Chips/Chiplets /
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Actually, a “transparent” network is needed
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Network is needed to scale beyond 2 chips/chiplets

/ Vi y/

C )

NoC extended to NoC* (spanning multiple chips/chiplets)




Scale Out Evaluation 7

* Architecture level simulations (same as for Scale Up Evaluation)

 Which benchmarks?

CNN & LLM inference

FFT

Matrix Multiply

Optional 4G/5G codec: Turbo + LDPC
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Summary

* Shared memory manycore is “simple”
* As aresult, it has been shown useful
* Now itis time to scale

e Research questions:
* How to scale up?
e How to scale out?

* How to evaluate scaling?
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