Processing in Memory for AI Acceleration with Silicon Photonics

Mini Keynote MPSoC Forum 2024, July 7-12, Kanazawa, Japan

Sudeep Pasricha

Department of Electrical and Computer Engineering Colorado State University, Fort Collins, CO, USA

sudeep@colostate.edu

Memory Bottlenecks in Computing

Modern high performance computing systems face a memory bottleneck

For future computing systems, alternate memory technologies need to be considered urgently

DRAM Scaling Woes

Charge-based, volatile storage mechanism of DRAM limits main memory scaling

Reclaiming DRAM Refresh Overheads

Non-volatile memory cells have promising potential over 1T-1C cells in a main memory architecture

Optically Programmed PCM Cells

OPCM cells can be used as building blocks for innovative optical main memory architectures

New Challenges: Thermal Crosstalk

Data corruption in crossbar-based OPCM memory after 4 writes to adjoining rows.

To preserve data integrity, OPCM cells must be isolated

COMET Photonic Main Memory

3. *COMET* Architecture

- Optical loss-aware architecture design
- Optimizations for energy efficiency and reliability

2. Memory Cell Design

• Memory cell design for thermal crosstalk mitigation and efficient phase transition

1. PCM Selection

• Explored PCMs to determine the best material based on efficiency for optical memory use case

F. Sunny, A. Shafiee, B. Charbonnier, M. Nikdast, S. Pasricha, "<u>COMET: A Cross-Layer Optimized Optical Phase Change Main Memory</u> <u>Architecture</u>", *IEEE/ACM DATE, Mar 2024.*

1. Phase Change Material Selection

- High transmittance contrast = High *n* (refractive index) contrast
- High κ (extinction coefficient) contrast = Energy efficient transition between states
 - As κ relates to the amount of energy transferred to the bulk

PCM: Phase Change Material

2. OPCM Memory Cell Design

geometric configuration with values for (width, thickness, transmission contrast ratio)

- The bulk and dimensions of the OPCM cell impact n and κ values
- High extinction coefficient (κ) contrast between amorphous and crystalline states needed
 - So that data readout is reliable
 - To accommodate additional transmission levels for MLC operation

3. COMET Architecture Overview

Colorado State University

Optical ML Accelerator Case Study

3D_DDR4+DOTA and 2.7× better EPB against COSMOS+DOTA

CO FP

Processing in Optical Memory

• Can we repurpose COMET for PIM?

- Challenge 1: Supporting higher levels of parallelism
 - Need to leverage additional mechanisms to increase memory access and computation parallelism beyond those offered by WDM
 - Leverage WDM+MDM for greater parallelism
- Challenge 2: Concurrent memory and computation operation
 - Reads should be supported from a selected subarray or a group of subarrays as needed, without interrupting the main memory operation
 - Redesign bank and subarray architectures
- Challenge 3: Interference-free accesses
 - When simultaneously read out, data from computation outputs and main memory accesses must not interfere with each other in an undesirable manner
 - Optimize waveguide topology and waveguide crossing design
- Challenge 4: Variable precision support
 - Architecture should support PIM operations between parameters (e.g., CNN weights/activations) of any size, irrespective of bit density used in OPCM cells
 - Leverage TDM and optimize aggregation unit design

OPIMA Architecture Overview

19 June 2024

Colorado State University

OPIMA Controller Design

Memory Write Control Flow

Colorado State University

Experimental Analysis

Model	Dataset	Accuracy (fp32)	Accuracy (int8)	Accuracy (int4)	Parameter count
Resnet18	CIFAR100	75.3%	74.2%	72.6%	11584865 (11.6 M)
InceptionV2	SVHN	81.5%	80.8%	75.9%	2661960 (2.6 M)
MobileNet	CIFAR10	88.2%	87.5%	83.5%	4209088 (4.2 M)
SqueezeNet	STL-10	92.5%	90.3%	86.5%	1159848 (1.1 M)
VGG16	Imagenette	98.96%	96.25%	93.7%	134268738 (134.3 M)

EPB and FPS/W Comparisons

- OPIMA outperforms CPU/GPU/NPU/PIM architectures by 83.1x (EPB) and 27.5x (FPS/W)
 - Also outperforms SOTA photonic PIM architecture PhPIM by 186x and 55.3x

OPIMA is a promising PIM architecture for AI acceleration

Conclusions

- Presented COMET, a low-loss, low-latency, and high throughput OPCM-based main memory architecture
- COMET consumes only 26% of power and has 2.7x lower EPB when paired with optical AI accelerator, vs. the only other OPCM-based main memory design, COSMOS
- Extended *COMET* to design *OPIMA*, an innovative optical PIM architecture with high throughput, low latency, and high energy efficiency
- OPIMA outperforms various CPU/GPU/NPU/PIM architectures, and has 186x lower EPB and 55.3x higher FPS/W than the only other photonic PIM architecture, PhPIM
- Optical PIM has excellent potential to be a very competitive solution for Al acceleration in emerging applications

Acknowledgements

Thank You!

Sudeep@colostate.edu

