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• Modern high performance computing systems face a memory bottleneck

• Capacity and energy bottlenecks may not be addressed by further process node scaling
• Scaling below 10nm node is challenging for memory
• Reduced cell capacitance and cell integrity

• Better I/O and system-level solutions needed to address bandwidth issues

Memory Bottlenecks in Computing
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Capacity bottleneck
[A. Golami, AI and Memory wall, online]

Bandwidth bottleneck
[A. Golami, AI and Memory wall, online]

Energy bottleneck
[B. Li et al., arXiv:2306.13177v4, 2023]

• Energy data averaged over three supercomputers
• Frontier (Oak Ridge, USA), LUMI (Kajaani, Finland), Perlmutter (Berkley, USA)

For future computing systems, alternate memory technologies 
need to be considered urgently

https://medium.com/riselab/ai-and-memory-wall-2cb4265cb0b8
https://medium.com/riselab/ai-and-memory-wall-2cb4265cb0b8


DRAM Scaling Woes
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(Left) DRAM Capacitor structure scaling; (Right) Leakage current vs capacitor thickness
[K. S. Kim and M. Popovici, MRS Bulletin, vol. 43, 2018]
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Charge-based, volatile storage mechanism of 
DRAM limits main memory scaling



Reclaiming DRAM Refresh Overheads
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[I. Bhati et al., IEEE TC, vol. 65, no. 1, 2016]

Time occupied by refreshes in DRAM

50% refresh skip

90% refresh skip
NVM memory

I. Thakkar, S. Pasricha, “Massed Refresh: An Energy-Efficient Technique to Reduce Refresh Overhead in Hybrid Memory Cube Architectures,” IEEE VLSID, Jan 2016.
I. Thakkar, S. Pasricha, “DyPhase: A Dynamic Phase Change Memory Architecture with Symmetric Write Latency and Restorable Endurance”, IEEE TCAD , Sept. 2018.

Non-volatile memory cells have promising potential over 
1T-1C cells in a main memory architecture

http://www.engr.colostate.edu/%7Esudeep/wp-content/uploads/c87.pdf
http://www.engr.colostate.edu/%7Esudeep/wp-content/uploads/j46.pdf


• SET state: Crystalline: high transmittivity: low optical loss: Typically the ‘high’ state
• RESET state: Amorphous: low transmittivity: high optical loss: ‘Low’ state

Optically Programmed PCM Cells
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OPCM cells can be used as building blocks for 
innovative optical main memory architectures



New Challenges: Thermal Crosstalk
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Data corruption in crossbar-based OPCM memory after 4 writes to adjoining rows.

• The crossbar PCM cell tiling exposes neighbor cells to power signal delivered
• Thermal crosstalk is non-negligible at higher bit density per cell
• Signals delivered to neighbors can impact data stored in the cell

Colorado State University

To preserve data integrity, OPCM cells must be isolated



COMET Photonic Main Memory
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• Explored PCMs to determine the best material 
based on efficiency for optical memory use case

1. PCM 
Selection

• Memory cell design for thermal crosstalk 
mitigation and efficient phase transition

2. Memory Cell 
Design

• Optical loss-aware architecture design
• Optimizations for energy efficiency and reliability

3. COMET 
Architecture

F. Sunny, A. Shafiee, B. Charbonnier, M. Nikdast, S. Pasricha, “COMET: A Cross-Layer Optimized Optical Phase Change Main Memory 
Architecture”, IEEE/ACM DATE, Mar 2024.

https://arxiv.org/ftp/arxiv/papers/2311/2311.08566.pdf
https://arxiv.org/ftp/arxiv/papers/2311/2311.08566.pdf


• High transmittance contrast = High 𝒏𝒏 (refractive index) contrast
• High 𝜿𝜿 (extinction coefficient) contrast = Energy efficient transition between states

• As 𝜅𝜅 relates to the amount of energy transferred to the bulk

1. Phase Change Material Selection

819 June 2024 Colorado State University
PCM: Phase Change Material



• The bulk and dimensions of the OPCM cell impact 𝑛𝑛 and 𝜅𝜅 values
• High extinction coefficient (𝜅𝜅) contrast between amorphous and crystalline states needed 

• So that data readout is reliable
• To accommodate additional transmission levels for MLC operation

2. OPCM Memory Cell Design

919 June 2024

Microring 
resonators (MRs): 
Wavelength 
sensitive photonic 
switches

Colorado State University

geometric configuration with values for 
(width, thickness, transmission contrast ratio) 



3. COMET Architecture Overview
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SOA: Semiconductor Optical Amplifier; MR: Microring Resonator

SOA-based 
intermediate gain 

tuning for improving 
signal-to-noise ratio 

(SNR)

• Subarrays remain completely disaggregated
• Reduced crosstalk and thermal noise
• Reduction in input power requirement

Colorado State University

• PCM based power-gating to reduce laser power



• We consider a photonic tensor core, so that data can funneled into the tensor engine as 
photonic signals

• DOTA [H. Zhu et al., arXiv:2305.19533, 2023]
• DOTA is a tensor core designed for transformer acceleration

• We consider DeiT-T and DeiT-B transformer models [https://github.com/facebookresearch/deit]  
for our analysis

Optical ML Accelerator Case Study
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COSMOS [A. Narayan et al., ACM TACO, 2022]
EPCM from [Y. Choi et al., IEEE ISSCC, 2012]

COMET+DOTA achieves at best 2.06× lower EPB against 
3D_DDR4+DOTA and 2.7× better EPB against COSMOS+DOTA



• Can we repurpose COMET for PIM?
• Challenge 1: Supporting higher levels of parallelism

• Need to leverage additional mechanisms to increase memory access and 
computation parallelism beyond those offered by WDM

• Leverage WDM+MDM for greater parallelism
• Challenge 2: Concurrent memory and computation operation

• Reads should be supported from a selected subarray or a group of subarrays as 
needed, without interrupting the main memory operation

• Redesign bank and subarray architectures
• Challenge 3: Interference-free accesses

• When simultaneously read out, data from computation outputs and main memory 
accesses must not interfere with each other in an undesirable manner 

• Optimize waveguide topology and waveguide crossing design
• Challenge 4: Variable precision support

• Architecture should support PIM operations between parameters (e.g., CNN 
weights/activations) of any size, irrespective of bit density used in OPCM cells

• Leverage TDM and optimize aggregation unit design

Processing in Optical Memory

Colorado State University 1219 June 2024



OPIMA Architecture Overview
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OPCM bank organization Subarray organization

Subarray internals

Low-loss WG crossing

Subarray access control

OPCM cell

OPCM array



OPIMA Controller Design 
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Memory Write Control Flow

Memory Read + PIM Control Flow



Experimental Analysis
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Model Dataset Accuracy (fp32) Accuracy (int8) Accuracy (int4) Parameter count
Resnet18 CIFAR100 75.3% 74.2% 72.6% 11584865 (11.6 M)

InceptionV2 SVHN 81.5% 80.8% 75.9% 2661960 (2.6 M)
MobileNet CIFAR10 88.2% 87.5% 83.5% 4209088 (4.2 M)
SqueezeNet STL-10 92.5% 90.3% 86.5% 1159848 (1.1 M)

VGG16 Imagenette 98.96% 96.25% 93.7% 134268738 (134.3 M)

OPIMA power breakdown OPIMA latency breakdown 



• OPIMA outperforms CPU/GPU/NPU/PIM architectures by 83.1x (EPB) and 27.5x (FPS/W)
• Also outperforms SOTA photonic PIM architecture PhPIM by 186x and 55.3x

EPB and FPS/W Comparisons

Colorado State University 1619 June 2024

OPIMA is a promising PIM architecture for AI acceleration



• Presented COMET, a low-loss, low-latency, and high throughput OPCM-based main 
memory architecture

• COMET consumes only 26% of power and has 2.7x lower EPB when paired with 
optical AI accelerator, vs. the only other OPCM-based main memory design, COSMOS

• Extended COMET to design OPIMA, an innovative optical PIM architecture with high 
throughput, low latency, and high energy efficiency

• OPIMA outperforms various CPU/GPU/NPU/PIM architectures, and has 186x lower 
EPB and 55.3x higher FPS/W than the only other photonic PIM architecture, PhPIM

• Optical PIM has excellent potential to be a very competitive solution for AI 
acceleration in emerging applications

Conclusions

1719 June 2024 Colorado State University
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Thank You!

Sudeep Pasricha
sudeep@colostate.edu
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