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Memory Bottlenecks in Computing

* Modern high performance computina systems face a memory bottleneck
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For future computing systems, alternate memory technologies

need to be considered urgently
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https://medium.com/riselab/ai-and-memory-wall-2cb4265cb0b8
https://medium.com/riselab/ai-and-memory-wall-2cb4265cb0b8

DRAM Scaling Woes
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Scaling of DRAM capacitors

(Left) DRAM Capacitor structure scaling; (Right) Leakage current vs capacitor thickness
[K. S. Kim and M. Popovici, MRS Bulletin, vol. 43, 2018]

Charge-based, volatile storage mechanism of
DRAM limits main memory scaling
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Reclaiming DRAM Refresh Overheads

Time occupied by refreshes in DRAM
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Non-volatile memory cells have promising potential over

1T-1C cells in a main memory architecture
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http://www.engr.colostate.edu/%7Esudeep/wp-content/uploads/c87.pdf
http://www.engr.colostate.edu/%7Esudeep/wp-content/uploads/j46.pdf

Optically Programmed PCM Cells
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OPCM cells can be used as building blocks for

innovative optical main memory architectures
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New Challenges: Thermal Crosstalk

Data corruption in crossbar-based OPCM memory after 4 writes to adjoining rows.

To preserve data integrity, OPCM cells must be isolated
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COMET Photonic Main Memory

3. COMET Optical loss-aware architecture design
Architecture Optimizations for energy efficiency and reliability

2. Memory Cell Memory cell design for thermal crosstalk
Design mitigation and efficient phase transition

1. PCM Explored PCMs to determine the best material
Selection based on efficiency for optical memory use case

F. Sunny, A. Shafiee, B. Charbonnier, M. Nikdast, S. Pasricha, “COMET: A Cross-Layer Optimized Optical Phase Change Main Memory
Architecture”, IEEE/ACM DATE, Mar 2024.
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https://arxiv.org/ftp/arxiv/papers/2311/2311.08566.pdf
https://arxiv.org/ftp/arxiv/papers/2311/2311.08566.pdf

1. Phase Change Material Selection
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» High transmittance contrast = High n (refractive index) contrast

* High k (extinction coefficient) contrast = Energy efficient transition between states
* As k relates to the amount of energy transferred to the bulk

PCM: Phase Change Material
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2. OPCM Memory Cell Design

Transmission Contrast
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* The bulk and dimensions of the OPCM cell impact n and x values

* High extinction coefficient (i) contrast between amorphous and crystalline states needed

» So that data readout is reliable
» To accommodate additional transmission levels for MLC operation
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3. COMET Architecture Overview

*+ PCM based power-gating to reduce laser power
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* Subarrays remain completely disaggregated
* Reduced crosstalk and thermal noise

SOA: Semiconductor Optical Amplifier; MR: Microring Resonator * Reductionin input power requirement
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Optical ML Accelerator Case Study
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COMET+DOTA achieves at best 2.06x lower EPB against

3D _DDR4+DOTA and 2.7x better EPB against COSMOS+DOTA
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Processing in Optical Memory

 Can we repurpose COMET for PIM?

« Challenge 1: Supporting higher levels of parallelism

* Need to leverage additional mechanisms to increase memory access and
computation parallelism beyond those offered by WDM

* Leverage WDM+MDM for greater parallelism
» Challenge 2: Concurrent memory and computation operation

* Reads should be supported from a selected subarray or a group of subarrays as
needed, without interrupting the main memory operation

» Redesign bank and subarray architectures
« Challenge 3: Interference-free accesses

« When simultaneously read out, data from computation outputs and main memory
accesses must not interfere with each other in an undesirable manner

« Optimize waveguide topology and waveguide crossing design
» Challenge 4: Variable precision support

* Architecture should support PIM operations between parameters (e.g. CNN
weights/activations) of any size, irrespective of bit density used in OPCM cells

* Leverage TDM and optimize aggregation unit design
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OPIMA Architecture Overview
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OPIMA Controller Design
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Experimental Analysis

Model Dataset Accuracy (fp32) | Accuracy (int8) Accuracy (int4) Parameter count
Resnet18 CIFAR100 75.3% 74.2% 72.6% 11584865 (11.6 M)
InceptionV2 SVHN 81.5% 80.8% 75.9% 2661960 (2.6 M)
MobileNet CIFARI10 88.2% 87.5% 83.5% 4209088 (4.2 M)
SqueezeNet STL-10 92.5% 90.3% 86.5% 1159848 (1.1 M)
VGGl6 Imagenette 98.96% 96.25% 93.7% 134268738 (134.3 M)
E Processing latency - Writeback latency
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3 ADC
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EPB and FPS/W Comparisons
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* OPIMA outperforms CPU/GPU/NPU/PIM architectures by 83.1x (EPB) and 27.5x (FPS/W)
* Also outperforms SOTA photonic PIM architecture PhPIM by 186x and 55.3x

OPIMA is a promising PIM architecture for Al acceleration
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Conclusions

* Presented COMET, a low-loss, low-latency, and high throughput OPCM-based main
memory architecture

« COMET consumes only 26% of power and has 2.7x lower EPB when paired with
optical Al accelerator, vs. the only other OPCM-based main memory design, COSMOS

« Extended COMET to design OPIMA, an innovative optical PIM architecture with high
throughput, low latency, and high energy efficiency

* OPIMA outperforms various CPU/GPU/NPU/PIM architectures, and has 186x lower
EPB and 55.3x higher FPS/W than the only other photonic PIM architecture, PhPIM

» Optical PIM has excellent potential to be a very competitive solution for Al
acceleration in emerging applications
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Thank You!

Sudeep Pasricha
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