A Cell-based DRAM for Fully Synthesizable PiM Accelerator Design

> Tohru ISHIHARA Nagoya University

(mostly done by <u>Tai-Feng Chen</u>)

My Talk at MPSoC 2023

A. Teman, et al., "Power, Area, and Performance Optimization of Standard Cell Memory Arrays Through Controlled Placement", ACM TODAES, vol.21, No.4, Article 59, May 2016. **Compact wired-OR**

DRAM block as a Standard Cell

Processing in DRAM

A 128kb (16-word x 32-bit x 256 sets) PiM circuit where cell-based DRAMs, address decoders, word-line drivers, and simple MAC units are placed and routed all together using a commercial APR tool.

Area and Energy Comparison

Full-custom GC-DRAM [1]	Full-custom SRAM [2]	Our previous work [3]	This work
65 nm	55 nm	65nm	55 nm
GC-DRAM	6T-SRAM	Latch-based	GC-DRAM
1.1	1.0 - 0.6	0.35	0.9 - 0.4
667	940@1.0V 360@0.6V	20@0.35V	60.6@0.9V 34.0@0.4V
0.48	0.62	3.8x smalle	r 0.595
0.71	0.96	6.82 🗕	*1.791
1.74	94.9@1.0V 48.7@0.6V =	8.8@0.35V	23.6@0.9V ➡ 3.7@0.4V
	Full-custom GC-DRAM [1] 65 nm GC-DRAM 1.1 667 0.48 0.48 0.71 1.74	Full-custom GC-DRAM [1] Full-custom SRAM [2] 65 nm 55 nm GC-DRAM 6T-SRAM 1.1 1.0 - 0.6 667 940@1.0V 360@0.6V 360@0.6V 0.48 0.62 0.71 0.96 1.74 94.9@1.0V 48.7@0.6V 48.7@0.6V	Full-custom GC-DRAM [1] Full-custom SRAM [2] Our previous work [3] 65 nm 55 nm 65nm GC-DRAM 6T-SRAM Latch-based 1.1 1.0 - 0.6 0.35 667 940@1.0V 360@0.6V 20@0.35V 0.48 0.62 3.8x smalle 0.71 0.96 6.82 1.74 94.9@1.0V 48.7@0.6V 8.8@0.35V

*Includes cell-based DRAMs, address decoders, and word line drivers.

- [1] K. C. Chun, et al., IEEE JSSC, vol. 47, no. 2, pp. 547-559, 2012.
- [2] Y.-W. Lin, et al., ISLPED, pp.79-84, 2012.
- [3] J. Shiomi, et al., Integration, vol.65, 2019.

Exploit IGZO to Extend Retention

- Short retention issue in MOS-based GC-DRAM
 - Gate capacitance is ~0.5 fF and ~5 μs retention time
- Indium-Gallium-Zinc-Oxide Thin-Film Transistors
 - Capacitor-less, long-Retention time (> 400s)

IGZO-DRAM

Low capacitance but low-leak

Traditional Deep Trench DRAM Large capacitance but normal-leak

A. Belmonte *et al.*, "Capacitor-less, Long-Retention (>400s) DRAM Cell Paving the Way towards Low-Power and High-Density Monolithic 3D DRAM," *proc. IEEE IEDM* 2020, pp. 28.2.1-28.

IGZO and MOS Hybrid Structure

- Indium-Gallium-Zinc-Oxide Thin-Film Transistors
 - Pros: Monolithically stacked 3D structure is possible
 - Can construct in metal layer and low process cost
 - Pros: Capacitor-less, long-Retention time (> 400s)
 - Cons: Slow read access compared with MOSFET
 - This prevent IGZO-DRAM from further scaling
 - Solution: IGZO and MOS hybrid structure

Conclusions

- Automated P & R with cell-based DRAM
 - APR using commercial tool is demonstrated
 - MAC units and GC-DRAMs are closely P & R together
 - 3.8X better area efficiency than latch-based SCM
 - 13X better energy efficiency than 6T-SRAM
- Future Research Direction
 - IGZO and MOS hybrid 3D structure
 - Lower process cost than traditional deep trench structure
 - Extend retention time w/o degrading access time