SYNOPSYS®

Navigating the Future: Processor IP Trends Driving Advanced SoCs

Dr. Yankin Tanurhan Sr. Vice President of Engineering, Synopsys

37 Years of Advancing Chip Design

Revenue (TTM)

Leading electronic design automation tools and services

Broadest portfolio of interface, foundation, processor and security IP

Pioneer in electronics systems solutions and AI-powered EDA

#12 global software company by revenue

Employees

Patents

R&D Investment

* Excluding SIG

Change Is Occurring Across Many Industries

Demand for Smart Everything seems limitless

Innovation is fueled by semiconductor and software advances Driven by fusion of big data, massive compute, and machine learning

Process Scaling Gains Lagging Compute Growth Needs

4

Multiple Innovations Closing the Gap

Synopsys°

Semiconductor Chips and Software are at the center of these monumental transformations

Software Drives Differentiation

SoC Designers & Software Developers Embracing Open Standard Solutions for **Collaboration and Flexibility**

Pioneering Innovations Enable Semiconductor Progress

Synopsys has the Broadest IP Portfolio for Modern SoCs

25 years of investment & commitment

#2 IP provider worldwide

Leader in Interface IP

Leader in Foundation IP

#2 in Processor CPU IP

Reduce design risk and speed time-to-market with high-quality IP

Growth in Designers Adopting RISC-V

3600+ RISC-V Int'l Members

Across 70 countries; 30% increase in 2022

108 Chip Companies

SoC, IP, FPGA

54 Software Companies

Dev tools, firmware, OS

13 Industries Represented

Cloud, mobile, HPC, ML, automotive

Synopsys°

9

Recent RISC-V Collaborations & Milestones

RISC-V Chip Design Industry Challenges and Opportunities

Ecosystem Maturity & Toolchain Support	Designers contend with less optimized tools, slowing development, debugging, & face limited resources due ecosystem's growth.
Performance Optimization	Complexity in achieving optimal performance & need for thorough understanding of the architecture.
Software Compatibility Di & Porting ex	fficulty in ensuring software compatibility & significant effort required for porting software.
Security Considerations Ensu	ring robust security features & vigilance against potential vulnerabilities.

Continued investment, industry collaboration, and advancements in SW/HW are crucial for RISC-V's success

It's All About the Implementation

Quality & Expertise Required for Implementation Success

Synopsys Solutions for RISC-V

Optimize QoR and Productivity

- Fusion QuickStart Implementation Kit (QIK), reference flows & guides for superior PPA
- Tunable to target application & process to 2nm

Early Architecture Exploration & SW Development

- Early performance/ power analysis & optimization of multicore SoCs
- Optimize HW/SW
 partitioning
- Flexible ARC-V virtual prototypes for SW dev

Accelerate SW Development w/HW

- Start SW development months before HW availability
- Avoid costly re-spins
- Actionable power profiling on full design & software workload

- ARC-V Processor IP with robust dev toolkit
- Silicon-proven Interface IP minimizes risk
- High-speed, low-leakage & low-power Foundation IP optimizes PPA
- Efficient Security IP helps
 protect data

Addressing Market Demand & Challenges with ARC-V IP

Builds on 25 Years of Customer Success & Leading PPA Efficiency

RMX Series					
APE	X extensions				
PMP	FPU				
ARC-V™ 32-bi	ARC-V™ RISC-V 32-bit core				
I\$/D\$	I\$/D\$ CCMs				
AXI I/F	NVM I/F				

- 32-bit embedded processor, optimized for ultra-low power 3- and 5-stage pipeline configurations
- Optional DSP extensions
- FuSa hybrid mode

				Co	re16
) Coi	Core2 re1	
RVV e	xtension	S			
ARC-V F 32-bit multi-i	C-V RISC-V multi-issue core				
I\$/D\$	CCMs				
Cache Coherency Unit PMP					
High-bar	ndwidth i	intercon	nect		

- 32-bit processor, optimized for real-time apps w/dual-issue 10-stage pipeline
- H/W virtualization support
- Up to 16x cores, plus H/W accelerators

RPX Series

			 Cor Core1	Core16 e2		
RV	V extensio	ons				
ARC 64-bit m	-V RISC-V ulti-issue o	, core	sbug / race			
L1 I\$	L1	D\$	Ъ			
L2\$ (priv	vate)	MM	U			
High-bandwidth interconnect						
Cluster Cache	H/W ac Ports	C.	CHI Mas Ports	ster		

- 64-bit multi-core host processor supporting user/supervisor profiles
- Multi-cluster cache coherency with AMBA-CHI interfaces

Functional Safety Features Accelerate SoC Safety Certification

For Processor IP, It's All About the Ecosystem

Broad Ecosystem Support for ARC-V Software Development

Synopsys Tools & Software	Open-Source Community	Commercial Partners		
MetaWare Development Toolkit Visual Studio Code-Based IDE	 GCC LLVM GDB /Binutils OpenOCD adbserver 	MathWorks VECTOR > froglogic MIRAIN Froglogic MIRAIN MIGHTEC MICHAELER MIGHTEC MICHAELER MIGHTEC MICHAELER MIGHTEC MICHAELER		
Simulink® Model-Based Design Support Compute Libraries	QEMU	Fraunhofer Molby PLPWISE CLS VQCAL fuence SEARAN		
Optimizing Compilers (scalar & vector C/C++, OpenCL C) Debugger/Profiler	RISC-V SBI libraryLinux	WISIONARY,AI SKymizer XPERI Millicoreusre Scotter Millicoreusre Scotter Morpho CLOTING Wision Morpho CLOTING Contractor Morpho Cloting Contractor Morp		
Functional Simulator Cycle-Based Simulator ISO 26262 & ISO 21434 Compliant	 Zephyr FreeRTOS uBoot 			

AI: The Technology Disrupter

AI Processing Extending from Data Center to the Edge

Al Is Pervasive

Rapid Adoption in Broad Spectrum of Applications Requires PPA-Optimized Solutions

Cloud Al Accelerator	Edge Con Accel	nputing Al erator	On-Device Al			Edge Device Accelerator		
Data Centers	Edge Servers	Accelerator Cards	Automotive	Voice Assistants	Mobile & AR/VR	Cameras	Digital TV	IoT /AloT
		a substantial and the second sec			5 ()	and the second sec		

Performance in TOPS / W \rightarrow

← Performance in TOPS

Model Compression (pruning, distillation, quantization, etc)

Synopsys®

Newer ML Models Further Pushing Limits of Compute

All Models Excluding Transformers: 8X / 2 years

Transformer Al Models: 275X / 2 years

Context-Aware Transformer Models Come at a Price

Source: https://blogs.nvidia.com/blog/2022/03/25/what-is-a-transformer-model/

Artificial Intelligence SoC Requirements Evolving

Trends Driving Increased Complexity and Performance Requirements for AI

Automotive Safety

There is an arms race toward automotive self-driving autonomy (L2+, L3, L4...) FuSa, Virtualization and Floating-Point Data Types all asked for ADAS.

Proliferation of AI from low- to mid-end use cases to 1000s of TOPS AI Market adoption and AI performance requirements continue to grow. More entry level AI being added (1-2 TOPS). ADAS L3 and beyond will require more AI computing.

Demand for Power and Area Efficient AI

Growing need for strong AI performance in smallest area and power budget – computer, consumer, automotive markets

Evolving Al Research

Emerging Neural Networks (i.e. Transformers, GenAl for NLP, Vision, Speech) require more advanced hardware and software techniques.

AI in Automotive – FuSa Applications

Embedded Vision

- Analyzes camera data for safety-enhancement and autonomous driving
- Expert-level accuracy in classifying objects in fractions of a second
- Example Use Cases:
 - Lane departure detection
 - Parking assist / self-parking

Radar/LiDAR

- Key components of Level 3+
 and autonomous vehicles
- Essential in night driving, conditions of rain and fog
- Example Use Cases:
 - Blind spot detection
 - Collision avoidance systems

Sensor Fusion

- Combines sensors to make more accurate representations of the environment
- Using multiple sensors together offset weaknesses of individual sensors
- Example Use Cases:
 - Autonomous vehicle nav
 - Smart Intersection

AI for Image Quality Improvement

– NPX6-1K Meets Performance and Power/Area for Image Quality Improvement Needs*

Original

Upscaling Video 4x with NN to save power

- Super resolution reinserts data back into the image to reduce blur or upscale image
- Super resolution requires NN performance
- Upscaling video at destination saves power by reducing data transmitted

Improving ISPs Using NN Denoiser

- Noise is THE limiting factor in capturing low light video
- Applying AI to ISP provides excellent denoising and demosaicing performance

*depending on image frame size and fps requirements SYNOPSYS® Synopsys Confidential Information

AI Technology Evolution: Edge Devices

	Last 5 years	Ongoing Designs	Next 3 years
High Level M/L Performance	100s of TOPS	Up to 1000 TOPS	2000+ TOPS
Algorithms	CNNs, RNNs	Transformers, GenAl (LLMs/LVMs)	Transformers, GenAl (SLMs, LMMs)
NPU Data Types	INT8	INT8 / INT4 FP16 / BF16	INT4 / INT8 FP4, FP8, OCP MX
Quantization	PTQ (Post Training Quantization)	PTQ w/mixed precision quant.	PTQ, QAT (Quant- Aware Training)
Process Nodes	16 nm / 12 nm	7 nm / 5 nm / 3nm	3nm / 2nm
DRAM Interface	LPDDR5/4/4X	LPDDR5X/5/4X	LPDDR6/5X/5
Multi-Die/Chiplet	N / A	UCle v1.1	UCle v1.2
Safety	ISO 26262	ISO 26262 ISO 21434	ISO 26262 ISO 21434

AI LaptopTrends

- Continued increase in AI performance requirements
 - Microsoft Copilot+ requires over 40 TOPs (INT8) on NPU
 - NPU performance becoming key PC product differentiator
- Key applications tracking state-of-theart AI models
 - Large Language Models: GPT-3 to interactive GPT-4o
 - Image to Video Generation: From Stable Diffusion to SORA video generation
 - Transformers remain central construct in GenAl NN models

World's most powerful NPU for next-gen AI PCs

NPU 8-bit TOPS on top model in each series

Generative AI Built With Transformers

Large-Language Models

- ChatGPT has exposed a wide audience to AI's capabilities
- Llama 2 offers scalable solution (
- Text-to-Image Models
 - Stable Diffusion, DALL-E, and Midjourney have demonstrated the potential of generative AI to generate images from text descriptions
- Generative AI Inference is moving to the edge
 - 9/11: MLCommons adds GPT-J 6B LLM to MLPerf Edge benchmarks
- Transformers are the building blocks of Generative AI

Stable Diffusion Prompt: *"Cute Dog Typing at a Typewriter German Style "*

https://mspoweruser.com/best-stable-diffusion-prompts/

Photography

Stable Diffusion Prompt:

"Macro photography of dewdrops on a spiderweb, with morning sunlight creating rainbows."

Painting

Stable Diffusion Prompt:

"Renaissance-style portrait of an astronaut in space, detailed starry background, reflective helmet."

Painting

Stable Diffusion Prompt:

"Pop Art painting of a modern smartphone with classic art pieces appearing on the screen."

Embedded World Moving to Transformers

Japanese Automotive OEM: We will be only running transformers in the future

- Deep learning models originally design for NLP
- State of the art accuracy for vision out of the box
- Attention-based networks better at recognizing more complex objects

Latest NPUs optimized specifically for highperformance execution of Transformers

Multi-Die Helps Scale Al Workloads

- Multi-Die Interfaces
 - UCIe support a strategic focus within Synopsys
- UCle Die-to-Die Interface
 - Lightweight, low latency & low power "tunnel"
 between interconnect
 fabics in each die
 - Interfaces directly with common fabrics (AXI, CXS, CHI)

ML Moving to Transformers and Gen Al

Transformers are Replacing CV and RNNs/CNNs and enabling Generative AI

Synopsys

- Synopsys is first company to launch CNN accelerator IP (2014) and first to launch NPU IP with Transformer support (2022)
- Transformers introduce Attention networks which enable emergence of Gen AI
- Generative AI model parameters are orders of magnitude larger than CNNs – requires Transformer support and efficient management of bandwidth

Panoptic Segmentation Using CNNs

Panoptic Segmentation combines predictions from both instance and semantic segmentation in a unified output

Image source: <u>https://www.barnorama.com/wp-content/uploads/2016/12/03-Confusing-Pictures.jpg</u> Model Used: Detectron2 - COCO-PanopticSegmentation/panoptic_fpn_R_101_3x

Multimodal Transformers

LLaVA Language

User: What is unusual about this image?

LLaVA: The unusual aspect of the image is that a man is ironing clothes on the back of a yellow minivan while it is on the road. This is an unconventional and unsafe place to perform such an activity, as ironing clothes typically requires a stable surface and appropriate equipment. Ironing clothes in a moving vehicle could lead to potential hazards for both the person doing the ironing and other road users.

https://arxiv.org/pdf/2304.08485.pdf

How Much Intelligence Do We Need?

Panoptic Segmentation

User: What is unusual about this image?

LLaVA: The unusual aspect of the image is that a man is ironing clothes on the back of a yellow minivan while it is on the road. This is an unconventional and unsafe place to perform such an activity, as ironing clothes typically requires a stable surface and appropriate equipment.

Multi-modal language/vision

Need to adjust balance to align with use case requirements

ARC Processor IP & Tools for Al Acceleration Tightly-Integrated IP with Common SW Development Platform

Scalable Architecture Tunable to Specific PPA Requirements

- NPU: 1K → 96K MACs, 1-8 NPUs, 1 to 3000+ TOPS at 1.3GHz 5nm
- DSP: 128/256/512-bit, 1-4 cores
- Floating Point: 0-2 vector FP pipelines, Tensor FPU
- Support for virtual addressing
- DSP & NPU scale independently

Flexible Design Helps Future-Proof SoC for Rapidly Evolving AI

- Data types: INT4, INT8, INT16, INT32, FP32, FP16, Bfloat16
- Multiple languages and machine learning frameworks
- Supports existing and future NNs
- NN SDK optimizes & automates NN mapping, abstracts HW

AI Data Explosion

Courtesy: Applied Materials

synopsys*

Blistering Pace of AI innovations

Market Leaders Realizing Significant Gains from Synopsys.ai

synopsys*

57

life.augmentec

AI Driving Unprecedented Power Consumption

Source: International Energy Agency, January 2024 report

Source: Schneider Electric, December 2023

Software to Device Solution Needed to Address the Magnitude of Power Consumption

Optimizing Power at Every Design Phase

>2X

Savings with Arch. Exploration and SW Profiling of AI Design

20%

Savings from RTL Changes of NPU Design 12%

Dynamic Power Savings from Implementation Opt. of HPC Design

All That Data Must Be Protected

Threats are Coming from Every Direction

Secure SoCs Need Secure Interfaces

Synopsys IP Protects High-Value Data Against Tampering and Physical Attacks

Complete, pre-verified solutions
 Tightly integrated Controller + Security + PHY
 enables optimizations for PPA, latency

✓ High grade security

Broad, silicon-proven protection for wide range of threats, including side-channel attacks

✓ Standards compliance

Tested and certified for compliance to the latest industry interface standards

In Summary

- Significant changes are occurring across many markets, fueling innovation
 - "Smart everything" and ML are creating new challenges and opportunities for semi vendors
 - High quality design IP reduces SoC project risk and time-to-market
- SoC developers are increasingly adopting RISC-V processors
 - Significant ecosystem investments from commercial vendors and the open source community
 - Implementation quality and software tool support are keys to success
- Al is everywhere, rapidly moving from the cloud to the edge
 - NPUs can process ML workloads more efficiently, important for power-constrained devices
 - Vast amounts of data created by AI must be secured, both on-chip and while in transit

Thank You