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Reference back to MPSoC’24 in Kanazawa
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Feb 27, 2010 „The Promise and Prejudice of Big Data in Intelligence Community“, 
K. Jani, Georgia Institute of Technology, October 26, 2016

2019

A Well-Known Story: Big Data in Motion



„Hey, ChatGPT …
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Source: OpenAI/ChatGPT

• … how to visualize the mutual dependencies 
between microelectronic advancements and 
staggering networking demands?”
• “… in 3D please!”
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Let’s quantify some challenges for high-speed NICs

The required processing capacity of NIC depends on:

Packet rate / Packet interarrival time

à packets per second (PPS)
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Source: https://iebmedia.com/wp-
content/uploads/2023/05/Ethernet-Speeds.pngLink speed 40 Gbps 100 Gbps 800 Gbps

Size [Byte] 64 512 64 512 64 512
PPS [M] 78 9.8 195 24 1,563 195

1 / PPS [ns] 12.8 102 5.1 41 0.64 5.1
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Source: Netronome

Header Processing

Payload Processing

§ Fixed header location allows simple parsing
§ Common use-cases: routing, switching, IP/port-based firewalls, …

§ Common use-cases: application/session/user identification for 

firewalls or bandwidth throttling, cryptology, intrusion detection, virus 

scanning, …
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L2 Switching (64B): !!" ∗ $!! = 195.313.000 ,-./01220.345 ∗ 75 742189.17342,-./01 = 14.6 ∗ 10< 742189.1734220.345

Intrusion Detection (512B): 146 ∗ 10< 742189.1734220.345 IPSec (512B) : 403 ∗ 10< 742189.17342
20.345
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Source: Netronome

The processing complexity of a networking function:

à instructions per packet (IPP)

Required processing capacity = !!" ∗ $!! [742189.1734220.345 ]

@ 100Gbps



Let’s quantify some challenges for high-speed NICs

AMD Ryzen 5 5600: 6 cores @ 3.9 GHz, 65 W TDP 

!"#$%&' ≈ 1
!"* = 6 -./01 ∗ 3$45 ∗ !"#$%&' ≈ 23,4 ∗ 10; <=1>/?-><.=110-.=@

Networking 
Function 100Gbps

L2 Switching 14.6 ∗ 10;
Intrusion 
Detection

146 ∗ 10;

IPSec 403 ∗ 10;

L2 Switching IPSec

IPSec @ 100Gbps would require 18 CPUs with a TDP of 1.1 kW! 

Intrusion Detection
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Let’s quantify some challenges for high-speed NICs
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§ Multi- and manycore architectures help to achieve higher throughputs
§ … but complexity of network services grows faster than processor performance

Ref.: S. Gallenmüller, P. Emmerich, F. Wohlfart, D. Raumer, and G. Carle. „Comparison of Frameworks for 
High-Performance Packet IO“. In: ANCS ’15

400G limit



The „Bigger Context“ of SmartNICs
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Offload networking functions to SmartNIC 
resources for ever increasing networking 
demands

With a Legacy NIC, this „fraction“ of
the SW stacks „eats“ the Server-CPU 
compute performance!

Typical functions of commercial SmartNIC:

• vSwitch offloading, NFV

• IPSec, SSL, Paket Filtering (DPI)

• Storage Protocol offload



§ adapt to evolving packet processing applications

§ efficient resource sharing among network applications

The „Bigger Context“ of SmartNICs

Performance and Energy Efficiency

Flexibility

§ cope with very high data rates (up to hundreds of Gbps)

§ lowest packet delay as possible

§ low power consumption Customized ASIC

Programmable CPU / ASIP

Source: T. Noll / H. Blume et al., „Model-based exploration of 
the Design Space for Heterogeneous System on Chip“, 2002
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State-of-the-art Network Processors
Netronome NFP-6xxx Flow Processor

§ 216 programmable cores to execute software
- 96 packet processing cores for stateless processing 
- 120 flow processing cores for stateful processing

§ More than 300 ∗ 10% &'()*+,)&-'((.,-'/

§ 100 hardware accelerators for
- DPI, regular expression matching
- Cryptography
- Hash calculation
- Packet I/O, Queue Management
- …

§ 50 Gbps bulk cryptography

§ 720 Gbps I/O

Source: Netronome
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Network Processing Memory Bandwidth Requirements
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IP packets (when processed “as usual”) …
§ … traverse the memory interface at least 4 times! 

§ Exceeds the peak streaming data rate of DDRx!

!"#$%&' ≥ 4 * 100-./0 = 400 -./0 = 234!5$'/#

I/O NoC Mem PE

PE retrieves 
packet from 
memory

Packet 
reception

Packet 
processing

PE write back 
packet to 
memory

Packet 
transmission

Memory Tacc
[ns]

fI/O 
[MHz]

Data 
width

BWmax
[GByte/s]

DDR3-2133 21 - 26 1066 64 bit 17.0

DDR4-3200 25 - 30 1600 64 bit 25.6

DDR5-5600 (~25) 2800 64 bit 44.8

HBM 3 3200 1024 820



SASSMC Memory Controller Extension
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• Wrapper extension to standard Memory Controller

• Reduce average data access latency to main memory and 
compulsory LLC cache miss accesses to main memory

• “On the fly” encryption / decryption
of data in main memory

• Strategies for pre-fetch / write back

• Application profiling

• OS / Hypervisor “hints”

• ML 

SoC

SASS
MC

DDR
RAM

NOR
Flash

MEM
-

CTRL

MEM
-

CTRL
SRAM

CPU

Accel

CPUCPUCPU
caches



Yet another Challenge, … the BIG ONE
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SRC, Decadal Plan for Semiconductors, Full Report, January 2021: 
https://www.src.org/about/decadal-plan/

G. Fettweis, E. Zimmermann, „ICT Energy Consumption – Trends 
and Challenges“, WPMC 2008.



Multi-Purpose SmartNICs
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Offload compute node resources for ever 
increasing networking demands:

• Network and Node Resilience

• Low-latency network coding / FEC

• Reflex-based traffic steering

• Energy Efficiency & Power 
Management

• ecoNIC-based workload pinning



ecoNIC

17F. Biersack, M. Liess, et. al., “ecoNIC: Saving Energy through SmartNIC-based Load Balancing of Mixed-Critical Ethernet Traffic“, 27th Euromicro DSD, 2024.

• Combines traffic-dependent power management in OS / Linux 
with priority-aware traffic steering / pinning in SmartNIC HW

Pinning



Networking Testbed @ LIS
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ecoNIC
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• Comparison relative to Linux Power Governors (performance, ondemand)

• C1/C2: different parameter settings for switching between power states



Take Aways …
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• High-speed / high-data-rate networks pose major technical challenges on the data plane 
compute architecture

• Not only on provisioning sufficient compute performance / accelerators, … 
• equally on data movement and storage
• energy consumption

• Crucial relevance of ingress / egress wire-rate pre-/post-processing in NICs 
• Offloading heterogeneous host processing (function repartitioning)
• Smart traffic steering and monitoring
• Energy saving and low-latency priority services are not necessarily contradicting goals
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