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Big Al

We are in the era of Big Al

BERT-Base (110M) may run on
your mobile phone.

LLaMA-7B (7B) can run on your
laptop with some optimizations.

Turing NLG (17B); You will need a
powerful workstation.

GPT-3 (175B); You will definitely
need a powerful computing server.

DeepSeek-R1 (671B); You will
need a data center or cloud Publication date

Villalobos, Pablo, et al. "Machine learning model sizes and the parameter gap." arXiv preprint

supercomput in gC luster. arXiv:2207.02852 (2022).
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Small Devices

e But the most powerful GPU failed to catch up with the pace.

10000 100000

+=GPU
10000 =#=|\lodel

1000

100

10

1

)
2,
)
=
n
>
—
o
£
)
P

Throughput (TFLOPs)

0.1 ResNet-15

0.01 AlexNet
esNet-152

0.001
2012 2014 2016 2018 2020 2022 2024 2012 2014 2016 2018 2020

Year Year

Center of Computational Evolutionary Intelligence (CEl)



Towards Efficient Al...

Simplify \" ‘ Simplify
Topology IR Operations
Pruning y Quantization
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Basic Idea of Pruning

® Redundant parameters in neural networks can be
safely removed, i.e., setting them to zero.

x X0 =0, x+0=x

e If an operand is zero, the result is known. No need
oerform the corresponding calculation.
Kipping the storage of zero values to save memory.

Kipping the computation with zero operands to reduce
latency and energy usage.

Center of Computational Evolutionary Intelligence (CEl)



Sparsity and Pruning are Not New Concepts

e Given asignal y € R", a basis ® € R™**"
and v is the coefficient vector, s.t.,

y = Ov
e Sparsity is defined as k, ||v]ly = k K n.
Vv

i

o JPEG2000 Compression (2002)

o Compressed sensing (2007)

Christopoulos, C., et al. (2000).
R. G. Baraniuk (2007).

e Applications:

Center of Computational Evolutionary Intelligence (CEl)

Optimal Brain Damage

Yann Le Cun, John S. Denker and Sara A. Solla
AT&T Bell Laboratories, Holmdel, N. J. 07733

e Theidea of pruning neural networks
can be traced back to the last century!

e Up to 60% of the parameters can be
removed without hurting the MSE.

4. Compute the saliencies for each parameter: s; = hppu}/2
5. Sort the parameters by saliency and delete some low-saliency parameters
6. Iterate to step 2

LeCun, Yann, et al. (1989).

Duke



Obtaining A Sparse Neural Network

e Objective: Find a set of weights § € RN
oCan achieve the optimal performance
°Has a minimal number of nonzero weight elements

e Mathematically, £, norm H-\ |o is used to represent the
number of nonzero elements in a vector or a matrix

e Formal objective:

mein||6|‘0 s.t.L(8) < €

Center of Computational Evolutionary Intelligence (CEl)



Dealing with £ Minimization

e The £; norm is combinatorial, not suitable for gradient-based
optimization
> Not continuous Il
> No informative gradients

e Alternative optimization methods
> Continuous sparsity-inducing regularizer
o £, norm (Lasso), Hoyer, etc.
o Proximal optimization methods
o [terative pruning, ADMM, stochastic approximation, etc.

Center of Computational Evolutionary Intelligence (CEl)



Simple Yet Effective: Lasso -

OR(W §i . _
ROW) = 2|Wi|; (W) _ sign(w;), w; =0
i

0W,; O, W; = 0

\

e Always shrink all the nonzero weight elements at a constant speed, until
they reach zero

® Least Absolute Shrinkage and Selection Operator

[1XI1, -V 1IXIl,
2 y 0.5

1

Tibshirani, Robert. "Regression shrinkage
and selection via the lasso." Journal of
the Royal Statistical Society: Series B
(Methodological) 58.1 (1996): 267-288.

Duke

Center of Computational Evolutionary Intelligence (CEl)



Hardware Representation of Sparsity

Pruned Neuron
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Hardware Concerns of Sparsity

® Modern hardware loads and computes the neurons in parallel.

e Example: Crossbar-based DNN Accelerator

.
Input |7 Input
Neurons ol Neurons
///
7
7

Output Neurons Weight Matrix Output Neurons Weight Matrix

Dense Neural Network Sparse Neural Network
. Wastes the Computations
e Solution: P

o Reordering the input/output neurons to cluster dense blocks

Duke
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Clustering Sparse Neuron Networks

* Dilemma of Crossbar-based Implementation

* 100% consumption of total available memristors.
 Maximum allowable size is limited (64x64).

* Neuron Clustering

ISC: Iterative Spectral Clustering ) AutoNCS
N

I
I
I
GCP: Greedy Cluster |
I
I
I
I

I

I

I

| : v

Size Prediction R
Neural || y Stop Y Customized
Networks || | MSC : Modified Decision Physical Design

| Spectral Clustering

I

[Best Paper Nomination, DAC15, W. Wen, et al.] Duke
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Clustering Sparse Neuron Networks

Baseline Clustering
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[DACL5, W. Wen, et al.] Duke

Ly :
Memristor crossbars Discrete synapse

Center of Computational Evolutionary Intelligence (CEl)




Clustering Sparse Neuron Networks
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Is Clustering Good Enough?

e The clustering process could be time-consuming if the network is large
> KNN (K-Nearest Neighbors) or similar methods are of 0(n?)

e Clustering expects a relatively small block size...
o Which is not the case for modern GPUs

e The “Clusters” are only relatively dense.

e The rest elements are still sparse and irregular.
o Which encounter dilemma in memory access.

Center of Computational Evolutionary Intelligence (CEl)



The Sparsity Dilemma: Irregularity in Memory

Dense Weight

. S Dense Memory Access:
. Contiguous S Regular Memory Access
Storage | 1 1 Cache Miss, 15 Cache Hits

‘ @) (0, 2)
; ’ Sparse Memory Access:
~ Non-contiguous 9)(1,0)

Irregular Memory Access
@ 2) 1 2' 3 : 1
Storage 23 2;.( ) 4 Cache Misses, 1 Cache Hit

. Coordinate (COO)
Sparse Weight Format

® First-time Access, Cache Miss & Follow-up Access, Cache Hit

Duke
2
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The Need of Structural Sparsity

e Non-structured sparsity may not bring much speedup on traditional
platforms like GPUs

7

“““mtl:ﬂ[m[m[m

EIQuadro K600
ETesla K40c¢
CIGTX Titan
“O-Sparsity

= Sparsity =

0
convl conv2 convd conv4d convs

Figure 1: Evaluation speedups of AlexNet on GPU platforms and the sparsity. convl refers to
convolutional layer 1, and so forth. Baseline is profiled by GEMM of cuBLAS. The sparse matrixes
are stored in the format of Compressed Sparse Row (CSR) and accelerated by cuSPARSE.

e Structured sparsity is more hardware-friendly

e Structured sparsity can be achieved by having all the parameters within a
structured group become zero or nonzero simultaneously

[NeurlPS’16, W. Wen et aI.]Duke
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Lasso on Structure: Group LASS

\i/ / ¢4 regularizer
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Group LASSO: Apply 1 regularizer to
the £, norms of the target groups.
J

N A

£{-norm
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dimension. all dimensions are setto 0 =
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Lasso on Structure: Group Lasso

Left:  ROW) = |82 + B3 + 16|
Right: R(W) = [B;1] + [B2] + |55l

Figure 4.3 The group lasso ball (left panel) in R*, compared to the ¢, ball (right
panel). In this case, there are two groups with coefficients 01 = (p1,B2) € R? and
0> = B3 € R.

e The outer Lasso applied on the £, norms of each group will encourage
some groups’ £, norms to be O

e Foraf, norm to be 0, all elements within the group have to become 0
simultaneously, leading to structured sparsity

Tibshirani, Robert, Martin Wainwright, and Trevor Hastie. Statistical learning with sparsity: the lasso and generalizations. Chapman and Hall/CRC, 2015. Duke
3
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Structured Sparsity in CNN

® Removing filters and channels:
E(W)=ED(W)+An-Z(Zwéi> |g) e Z(Zwv( |g)

=1 ny=1 =1 ci=1

e Modifying filter shape'

c, M, K
E(W) = Ep(W) + X, - T(TTTH <2mlkl||g)

=1 ci=1m;=1k;

e Shortcut is added to enable ™ ™. L

whole layer removal Nm \ l

““shape-wise

w

.,cj,mi,ki

\* \h
filter-wise W?Ef) — depth-wise W

[NeurlPS’16, W. Wen et aI.]Duke
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Experiment Results with Group Lasso

Table 4: Sparsity and speedup of AlexNet on ILSVRC 2012

Method Topl err.

Statistics

convl

conv?2

conv3

conv4

4y 44.67%

sparsity
CPU x
GPU x

67.6%
0.80
0.25

92.4%
291
0.52

97.2%
4.84
1.38

96.6%
3.83
1.04

SSL 44.66%

column sparsity
row sparsity
CPU x
GPU x

0.0%
9.4%
1.05
1.00

63.2%
12.9%
3.37
2.37

76.9%
40.6%
6.27
4.94

84.7%
46.9%
9.73
4.03

pruning [7] 42.80%

sparsity

16.0%

62.0%

65.0%

63.0%

2 42.51%

sparsity
CPU x
GPU x

14.7%
0.34
0.08

76.2%

0.99
0.17

85.3%
1.30
0.42

81.5%
1.10
0.30

SSL 42.53%

column sparsity
CPU x
GPU x

0.00%
1.00
1.00

20.9%
1.27
1.25

39.7%
1.64
1.63

39.7%
1.68
1.72

® Less overall sparsity, but higher speedup

Center of Computational Evolutionary Intelligence (CEl)
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Learning Structural Sparsity in LSTMSs

Learn Intrinsic structural sparsity in LSTMs

outputs
(hidden states)
cell states c,

D
input gates lt 1r

“r output gates oc
mpul
u ddles

tan

I Q|Q

h,_ i tateg
t-1 X, hidden states h,

inputs

» Mult-add

Dropout Perplexity ISS#in
Speedup reduction’

Method oo atio  (validate, test)  (1st, 2nd) LSTM

Weight # Total time

66.0M 157.0ms 1.00x 1.00x

14.82ms 10.59x 7.48x
22.11ms 7.10x 5.01x

baseline 0.35 (82.57, 78.57) (1500, 1500)

(82.59, 78.65) (373, 315) 21.8M

158 0.60 (80.24, 76.03) (381, 535) 25.2M

direct design 0.55

(90.31, 85.66) (373, 315) 21.8M  14.82ms  10.59x 7.48x

" Measured with 10 batch size and 30 unrolled steps.

t The reduction of multiplication-add operations in matrix multiplication, Defined as (original Mult-add)/(left Mult-add)

LSTM 1

m

LSTM 2 Output
il

T

[

Ee]

[ICLR’18, W. Wen et al.]

Center of Computational Evolutionary Intelligence (CEl)

Customized structural sparsity on Gaussian Neural

Accelerator (GNA)

Learning structural
sparsity from scratch

Iy}

Fixing zero parameters

U

Retraining nonzero
parameters

|} I

Il
11l
1] 111

w
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|
|

i
f
N

I

ll.

Method A

Sparsity in LSTM

group-8 1

2 . mean

Sparsity

WER

develop

test

baseline i 0

( 0 0

11.5%

11.4%

ESS .15 39.1%
ESS .35 62.2%
ESS .65 74.9%

59.()‘% 36.0%
2.5% 68.6%
8\ 5% 71.7%

12.0%
12.6%
13.3%

11.8%
12.6%
13.3%

Method

Sparsity in LSTM

group-16 1

2 3 mean

Sparsity

WER

develop

test

baseline 0 0

0 0 0

11.5%

11.4%

ESS 0.15 36.6%
ESS 0.35 55.8%
ESS 0.65 67.9%

56.7% 37.2% 44.6%
77.0% 63.8% 67.0%
84.9% 70.4% 75.4%

11.8%
12.5%
13.1%

11.7%
12.4%
13.1%

[ICASSP’19, J. Zhang et al.]

Duke




Activation Sparsity in Foundation Models

* Neurons in LLM are highly sparsely activated. We propose a framework that activates neurons by

* Predicting the activation of neurons in advance can input semantic predictions.
save the calculation of non-activated neurons, Achieve 10x speedup by leveraging input semantics to
thereby reducing 70% calculation during inference. predict sparsity patterns.

; w Corelnfer
= »0R0R) » f »O0R0OR e S

| I T Ill|>
4 3 2 |01234

* Activation sparsity is strongly correlated with input
semantics in terms of both similarity and stability.

40

20

8}

-20

—a0

—60
=60 =40 =20 0 20 40 60 =75 =50 =25

(a) 5-th Layer (b) 15-th Layer (c) 25-th Layer
arXiv24, Q. Wang et al.
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Towards Efficient Al...

Simplify \" ‘ Simplify
Topology IR Operations
Pruning Y Quantization
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Quantization

® The history of quantization theory n | Binary
and practice dates back to 1948. T : Encoder

e Quantization is a basic technique in
digital signal processing (DSP).

e Converting continuous levels into
discrete ones (analog-to-digital
conversion).

Decoder

R. M. Gray and D. L. Neuhoff, "Quantization," in IEEE Transactions on Information
Theory, vol. 44, no. 6, pp. 2325-2383, Oct. 1998, doi: 10.1109/18.720541. D k
q

Center of Computational Evolutionary Intelligence (CEl)



Reducing Computational Complexity

Multiplier and adder circuits with different precisions.
Int4: Area/Power: 1x

Relative Energy Cost Relative Area Cost

Operation: Energy(pJ): Area(pum?): Int8: Area: 3.5X%, Power: 3.9X
8b Add 0.03 36

16b Add 0.05 67
32b Add 0.1 137
16b FP Add 0.4 1360
32b FP Add 0.9 4184
8b Mult 0.2 282

32b Mult 3.1 | 3495 Int32: Area: 43X, Power: 60X
16b FP Mult 1.1 1640
32b FP Mult 3.7 | 7700 FP32: Area: 96X, Power: 72X
32b SRAM Read (8kb)5.0 N/A
32b DRAM Read 640 N/A

1 10 100 1000 10000 1 10 100 1000

arXiv’23, Sehoon Kim et al. Duke
44
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IBM TrueNorth — Binary Neural Networks

w' ) synaptic
> crossbar

U0

)
g

(2014) block stride
4,096 neurosynaptic cores
1 million neurons
256 million synapses
A 65mW real-time neurosynaptic
processor

block size (16) ,

neurosynaptic cores
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Minimizing The Deployment Variance

connectivity probabilities p
\

spike
probabilities

—

0.5 1
no penalty

—

iz B

(o -1

=03

(a) Tea learning

1.00

0.75

0.50

0.25

0.00

Synaptic Deviation

Baseline

connectivity samples

\
spike
samples

Ay=y' -y

[var {Ay} = Z:Ol var {szl }J

OFF!
e Target: Minimize the variance.

e Solution: Adding a regularizer.

Ew(w) = |llw —al = b||

0.5

0.4

(b) Tea deploying

—>

Synaptic Deviation 0.3

0.2

0.1

0

0.5 1

vor{w || (w1 | [ =p (1)

- Variance
— Penalty
a=b=0.5

0 0.5

1

d biast Probability Best P N inati DAC’16. W. W l.
proposed biasing [Best Paper Nomination, DAC’16, eneta ]Pi Duk

Regularization
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Experimental Results

(-
NN

-©-baseline | | | - -©-baseline
| =0-probability biasing | -0-probability biasing
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=
2
D
=
«
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7]
d)
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[Best Paper Nomination, DAC’16, W. Wen et al.] Duke
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A Unified View of Pruning and Quantization

e Selecting the optimal precision for each layer introduces a large and discrete
design space.

e For a fixed-point quantized matrix, when can its precision be reduced?
o MSB=0 for all elements: precision can reduce directly

G T —
31 10 0 1 12_ 0 1 11, Remove the MSB Column Jr\

o LSB=0 for all elements: precision can be reduced with scaling factor 2

[140151(1) 0 1 0 sz[1 0 1 )

T
0
1 0 O 2 0O 1 O 2  Remove the LSB Column )

0N
—

r

e MP quantization scheme can be explored by inducing structural bit-level sparsity

newr2s, Hovangetall PDylee

Center of Computational Evolutionary Intelligence (CEl)



Mix-Precision with Bit-Level Sparsity

—>

Quantize

1.2

0.2
14

e We first perform 8-bit quantization. [2.0]

® The quantized model is converted into a
bit-level representation

o Each bit-value is a trainable, floating-point value. Recover weight values from
bit representation.

e We apply bit-level group LASSO to the - =;R(O.2x4+1.3x2+0.8x1)=;|
columns. STE forward 1

DNNFP » _ e
Structured pruning of the bit STE backward Jsha)

. oL ’
representation «— [04 02 01] « - ==

oL 1
t W DNN BP

S

Quantization Get gradient for each bit.
[ICLR’21, H. Yang et al.] Duke

7/
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Mix-Precision with Bit-Level Sparsity

Table 2: Quantization results of ResNet-20 models on the CIFAR-10 dataset. BSQ is compared with
DoReFa-Net (Zhou et al.; 2016), PACT (Choi et al.; 2018), LQ-Net (Zhang et al., 2018), DNAS (Wu
etal., 2019) and HAWQ (Dong et al., 2019). “MP” denotes mixed-precision quantization.

Benchmarks BSQ
Act. Prec. | Method = Weight Prec.  Comp (x) Acc (%) | « Comp (x)  Acc (%)

32-bit Baseline 32 1.00 92.62
LQ-Nets 3 10.67 92.00 Se-3 14.24 92.77

DNAS MP 11.60 92.72 Te-3 19.24 91.87
LQ-Nets 2 16.00 91.80

HAWQ MP 13.11 0222 | 5e-3 14.24 92.32

LQ-Nets : 10.67 91.60 2e-3 11.04 92.16
PACT : 10.67 91.10 Se-3 16.37 91.72
DoReFa : 10.67 89.90

LQ-Nets 16.00 90.20
PACT 16.00 89.70
DoReFa 16.00 88.20

[ICLR’21, H. Yang et al.] Duke
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Combining Quantization and Cache Compression
for Memory-bound LLMs

LLMs are memory-intensive due to Keys and Values _ w= projection s Attention

storage
Previous quantization methods suffer from high

compression overhead

Integrate compression and decompression in cache-
level:

e Low overhead

* _Effective compression with hardware support
1

I Streaming Multiprocessors

Compressor |!

wax 1)
|
|
I
|
|
|
T
|
|

Streaming Multiprocessors > —»

(SMs)

Suq=256 Seq=512 Seg=1K Seg=2K Seg=4K

-] -

L2 Cache °*

Parallel
Decompressor
2x/4x

Register File

D Uncompressed Data D Compressed Data D Proposed HW D GPU HW

[ISCA’ZS, C.Fe ng et al'] (c) Normalized latency vs. various models.
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Towards Efficient Al...

® One Device -> Computational Complexity for Inference & Training
> By reducing the complexity of the topology
> By reducing the complexity of the operation

e Many devices -> Scale up Training Efficiency with Parallelism

Communication bottleneck
ATime

! Total Limitation . _
| Communication Complexity

: 1
| / at‘o
anic
mm

|Co E
# machines Duke

Center of Computational Evolutionary Intelligence (CEl)



TernGrad — Gradients Histograms

AfA
- Ab gy

A -

(a) original (b) clipped (c) ternary

 Transfer the distribution instead of the raw values.
e Use0, +1, -1 to represent the direction of the gradients.
 Convert 32-bit floating point into 3 levels.

[Oral, NeurlPS’17, W. Wen et al.] Duke
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TernGrad — Speedup

Training throughput on GPU cluster with Training throughput on GPU cluster with
Ethernet and PCI switch InfiniBand and NVLink
100000 o AlexNet FP32 AlexNet TernGrad 240000 m AlexNet FP32 AlexNet TemGrad

® GoogLeNet FP32 GoogLeNet TernGrad " GoogleNet FP32 GooglLeNet TemGrad
= VggNet-A FP32 VggNet-A TernGrad 200000 mVggNet-A FP32 VggNet-A TernGrad

4000 6000
160000

3000

2000 120000

s
X,
0
<)
)
@
E

Images/sec

1000

80000
0 Il- III ‘II I|_ I‘_ I
‘ 40000 ‘
i =i nzl | II—| - n 0 O i 1. II. ‘Il I I

I
8 16 32 64 128 256 512 6 32 64 128 256 512

# of GPUs # of GPUs
(@) (b)

Figure 5: Training throughput on two different GPUs clusters: (a) 128-node GPU cluster with
1Gbps Ethernet, each node has 4 NVIDIA GTX 1080 GPUs and one PCI switch; (b) 128-node GPU
cluster with 100 Gbps InfiniBand network connections, each node has 4 NVIDIA Tesla P100 GPUs
connected via NVLink. Mini-batch size per GPU of AlexNet, GoogLeNet and VggNet-A is 128, 64

and 32, respectively [Oral, NeurlPS’17, W. Wen et al.] Duke
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Clustering for Distributed Mobile Training and Testing

e Transmission Reduction

o ] o ] Clustering
Distributed Mobile Training Architecture

Worker 0 GO Worker 1
~ Data and Model Initial Model ~ Data and Model

‘ Load h ‘ Load
: Load -
Compute Gradients g Compute Gradients g

Fﬂ:codt!.: :?: :> <::?::ﬁlnc:1:‘
O O
g g

Decode
Load Next Batch Data Load Next Batch Data

Merge g from workers
I Decode<: :>Dec0de|

Encode
] —
Update weights w Update weights w Sy
Next MiniBatch Trained Model Next MiniBatch Input NeurOns

Save

()U.L]j?ul NOUTOHS:

i S T
e

O O O (a) Original (B) Cluéteréd (MSCCQ) (¢) Outliers (FGCP)

[Best Paper Award, DATE 2017, ICCAD 2017, J. Mao, et al.] Duke
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TernGrad to Binary Mask: FedMask

~ A
LS
SN N
’ - "~

- \ -~ \

- N
~ A -~
PN veo ]
\ lh‘<" /
(VPPN

frozen masked
weights weights

The devices train and transmit 1-bit
binary masks rather than the 32-bit
weights!

[SenSys’21, A. Li et al.]
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Evaluations

e Dataset
o EMNIST, CIFAR10, HAR, Shakespeare

® Baselines
o Standalone
o FedAvg
o Top-k (communication efficient)
> BNN-FedAvg (binary neural network+FedAvg)
o Per-FedAvg (FedAvg+MAML)
o LG-FedAvg (personalization+communciation)

Center of Computational Evolutionary Intelligence (CEl)

® FedAvg

Per-FedAvg A Topk @ LG-FedAvg

® BNN-FedAvg Y FedMask W Standalone
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FedBPT: Federated Black-box Prompt Tunmg

This restaurant has ...

Minimize the computational and memory cost Model In;‘;;ence API

by getting rid of backpropagation *

User Labeled Data

Tunable Task Prompt | this restaurant has ... great

4> This store sells low ... bad

A totally boring movie ... bad

X Y

Minimize the communication cost BP-Free Optimization
by exchanging task prompt

L Local Data Local Data

. CMA-ES (Covariance Matrix Adaptation i *'f
[ICML’24, Jingwei Sun, et al.] | Evolutionary Search) algorithm -
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Demo with Llama2-7B

CRORCE 40

d)
print_timings: eval time = 0.01 ms / 1
r:r)\s ( 0.01 ms per token, 200000.00 tokens per seco
n
print_timings: total time = 90519.08 ms
Question: the piquant story needs more dramatic meat on
its bones . Answer:Negative
slot 0 released (79 tokens in cache)
slot 0 is processing [task id: 192]

N andy

elar B - b sacha em -

print_timings: prompt eval time = 118094.48 ms / 101
tokens ( 1169.25 ms per token, 0.86 tokens per secon
A

print_timings: eval time = 0.01 ms / 1
runs  ( 0.01 ms per token, 200000.00 tokens per seco
nd)

print_timings: total time = 118094.49 ms
Question: the film 's few ideas are stretched to the poi
nt of evaporation ; the whole central section is one big
chase that seems to have no goal and no urgency . Answ
er:Negative

slot 0 released (102 tokens in cache)

. g slot 0 is processing [task id: 195]
NVldla slot 0 : kv cache rm - [0, end)

Jetson TX2

ESC / HOME END PGUP

CTRL ALT - 5 PGDN

2 3 4 5pEEmEES 9 0

< NVIDIA

’, holgerroth FedBPT: Fix fedbpt cma version (#3029) @

NVFlare | research [ fed-bpt/ (0

[ICML’24, , Best Paper Award in AAAI Spring Syp. Jingwei Sun, et al.] Dukﬁ




On-device Experimental Results of Llama2-7B
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Our Journey Towards Efficient Al

-

\JML Systems

Pruning and
Quantization For
Federated Learning

On-device LLM
Training System

Mixture-of-Experts
Serving System
J

@uning Structured
Pruning

Algorithm

L e

N

Structured
Pruning for LSTM

Token Pruning fo
Foundation Models

Hardware-aware
Structured Pruning

LASSO
Sparsity

Efficient Processing-in-
Memory Macro

Circuit and Architecture

S
Accelerator for Accelerator for Quantization
Sparsity

[

Cache Compression for LLM )
Robustness and Security ‘

>

2015 2016 2017 2018

Center of Computational Evolutionary Intelligence (CEl)

2019

2020 2021 2022 2023 2024 2025
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What We Learned from This Journey

e Our goal is to address the cost of storage, computation, and
communication when deploying Al models through software and
hardware co-design.

o With a unified optimization framework.

® The optimization should consider both software flexibility and
hardware constraints.

coThe design could be multi-objective.

Center of Computational Evolutionary Intelligence (CEl)



TCASAI Call-for-Paper!

ﬁ IEEE Transactions on Circuits and

Systems for Artificial Intelligence

$

?nn!_ 1EEE ": . .
G GEDA S Hmmm. (P Learn more
CAS ¥ LOCIETY

Center of Computational Evolutionary Intelligence (CEl)

The IEEE Transactions on Circuits and Systems
for Artificial Intelligence (TCASAI) is financially
sponsored by the IEEE CASS, SSCS, and CEDA, and
technically sponsored by the IEEE EDS and NANO

Scope

The IEEE Transactions on Circuits and Systems for
Artificial Intelligence (TCASAI) publishes
contributions related to circuits and systems for
artificial intelligence, including circuit and
electronic system design, implementation, and
demonstration

Submission is now open!

Duke
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“Real” Heroes Behind the Scenes
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Wei Wen, Meta  Huanrui Yang, U. of Arizona  Jingchi Zhang, Google Jiachen Mao, Meta

v

Ang Li, U. of Maryland Jingwei Sun, U. of Florida  Zhixu Du, Duke Qinsi Wang, Duke  Feng Cheng, Duke
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