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Big AI
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⚫ We are in the era of Big AI!
◦ BERT-Base (110M) may run on 

your mobile phone.

◦ LLaMA-7B (7B) can run on your 
laptop with some optimizations.

◦ Turing NLG (17B); You will need a 
powerful workstation.

◦ GPT-3 (175B); You will definitely 
need a powerful computing server.

◦ DeepSeek-R1 (671B); You will 
need a data center or cloud 
supercomputing cluster.

Villalobos, Pablo, et al. "Machine learning model sizes and the parameter gap." arXiv preprint 
arXiv:2207.02852 (2022).



Small Devices
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⚫ But the most powerful GPU failed to catch up with the pace.
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Towards Efficient AI…
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Basic Idea of Pruning
⚫ Redundant parameters in neural networks can be 
safely removed, i.e., setting them to zero. 

⚫ If an operand is zero, the result is known. No need 
to perform the corresponding calculation.
◦ Skipping the storage of zero values to save memory.

◦ Skipping the computation with zero operands to reduce 
latency and energy usage.
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𝑥 × 0 = 0, 𝑥 + 0 = 𝑥



Sparsity and Pruning are Not New Concepts
⚫ Given a signal 𝑦 ∈ ℝ𝑛, a basis Φ ∈ ℝ𝑛×𝑛

and 𝑣 is the coefficient vector, s.t.,
𝑦 = Φ𝑣

⚫ Sparsity is defined as 𝑘, 𝑣 0 = 𝑘 ≪ 𝑛.

⚫ Applications: 
◦ JPEG2000 Compression (2002)

◦ Compressed sensing (2007)
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Christopoulos, C., et al. (2000). 
R. G. Baraniuk (2007).

⚫ The idea of pruning neural networks 
can be traced back to the last century!

⚫ Up to 60% of the parameters can be 
removed without hurting the MSE.

LeCun, Yann, et al. (1989).



Obtaining A Sparse Neural Network

⚫ Objective: Find a set of weights መ𝜃 ∈ ℝ𝑁

◦Can achieve the optimal performance

◦Has a minimal number of nonzero weight elements

⚫ Mathematically, ℓ0 norm ⋅
0

is used to represent the 

number of nonzero elements in a vector or a matrix

⚫ Formal objective:
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min
𝜃

𝜃
0
𝑠. 𝑡. ℒ 𝜃 < 𝜖



Dealing with ℓ0 Minimization 
⚫ The ℓ0 norm is combinatorial, not suitable for gradient-based 
optimization
◦ Not continuous

◦ No informative gradients

⚫ Alternative optimization methods
◦ Continuous sparsity-inducing regularizer

◦ ℓ1 norm (Lasso), Hoyer, etc.

◦ Proximal optimization methods

◦ Iterative pruning, ADMM, stochastic approximation, etc. 
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Simple Yet Effective: Lasso

𝑅 𝑊 =

𝑖

𝑤𝑖 ,
𝜕𝑅 𝑊

𝜕𝑤𝑖
= ቊ

𝑠𝑖𝑔𝑛 𝑤𝑖 , 𝑤𝑖 ≠ 0
0, 𝑤𝑖 = 0

⚫ Always shrink all the nonzero weight elements at a constant speed, until 
they reach zero 

⚫ Least Absolute Shrinkage and Selection Operator 
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Tibshirani, Robert. "Regression shrinkage 
and selection via the lasso." Journal of 
the Royal Statistical Society: Series B 
(Methodological) 58.1 (1996): 267-288.

Constant!



Hardware Representation of Sparsity
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Hardware Concerns of Sparsity
⚫ Modern hardware loads and computes the neurons in parallel.

⚫ Example: Crossbar-based DNN Accelerator

⚫ Solution:
◦ Reordering the input/output neurons to cluster dense blocks
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Clustering Sparse Neuron Networks
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[Best Paper Nomination, DAC15, W. Wen, et al.]

• Neuron Clustering

• Dilemma of Crossbar-based Implementation

• 100% consumption of total available memristors.

• Maximum allowable size is limited (64x64).
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Clustering Sparse Neuron Networks
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[DAC15, W. Wen, et al.]
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Clustering Sparse Neuron Networks
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Test Bench:
• A Hopfield Network As Associative Memory
• 500 Neurons
• 30 Patterns
• 90%+ Recognition Rate
• 94.39% Sparsity 

(a) The 1st iteration (b) The 2nd iteration (c) The 11th iteration

[DAC15, W. Wen, et al.]
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Is Clustering Good Enough?
⚫ The clustering process could be time-consuming if the network is large

◦ KNN (K-Nearest Neighbors) or similar methods are of 𝑂(𝑛2)

⚫ Clustering expects a relatively small block size…
◦ Which is not the case for modern GPUs

⚫ The “Clusters” are only relatively dense.

⚫ The rest elements are still sparse and irregular.
◦ Which encounter dilemma in memory access.
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The Sparsity Dilemma: Irregularity in Memory
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The Need of Structural Sparsity
⚫ Non-structured sparsity may not bring much speedup on traditional 
platforms like GPUs

⚫ Structured sparsity is more hardware-friendly

⚫ Structured sparsity can be achieved by having all the parameters within a 
structured group become zero or nonzero simultaneously
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[NeurIPS’16, W. Wen et al.]



Lasso on Structure: Group LASSO 
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ℓ1-norm 
• Shrink uniformly in each 

dimension.

ℓ2-norm 
• Shrink toward the origin, where 

all dimensions are set to 0

−Δ 𝒙 1 −Δ 𝒙 2



𝑗=1

𝐽

𝜃𝑗
2

Group LASSO: Apply ℓ1 regularizer to 
the ℓ2 norms of the target groups.
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𝑅 𝑊 =

𝑖
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Lasso on Structure: Group Lasso 

⚫ The outer Lasso applied on the ℓ2 norms of each group will encourage 
some groups’ ℓ2 norms to be 0

⚫ For a ℓ2 norm to be 0, all elements within the group have to become 0 
simultaneously, leading to structured sparsity 
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Tibshirani, Robert, Martin Wainwright, and Trevor Hastie. Statistical learning with sparsity: the lasso and generalizations. Chapman and Hall/CRC, 2015.

𝑅 𝑊 = 𝛽1
2 + 𝛽2

2 + 𝛽3

𝑅 𝑊 = 𝛽1 + 𝛽2 + 𝛽3

Left:

Right:



Structured Sparsity in CNN
⚫ Removing filters and channels:

⚫ Modifying filter shape:

⚫ Shortcut is added to enable 
whole layer removal
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[NeurIPS’16, W. Wen et al.]



Experiment Results with Group Lasso

⚫ Less overall sparsity, but higher speedup
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[NeurIPS’16, W. Wen et al.]



Learning Structural Sparsity in LSTMs
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• Customized structural sparsity on Gaussian Neural 
Accelerator (GNA)

• Learn Intrinsic structural sparsity in LSTMs

[ICLR’18, W. Wen et al.] [ICASSP’19, J. Zhang et al.]



Activation Sparsity in Foundation Models
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• Neurons in LLM are highly sparsely activated.

• Predicting the activation of neurons in advance can 
save the calculation of non-activated neurons, 
thereby reducing 70% calculation during inference.

[arXiv24, Q. Wang et al.]

• Activation sparsity is strongly correlated with input 
semantics in terms of both similarity and stability.

• We propose a framework that activates neurons by 
input semantic predictions.

• Achieve 10x speedup by leveraging input semantics to 
predict sparsity patterns.



Towards Efficient AI…
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Quantization
⚫ The history of quantization theory 
and practice dates back to 1948.

⚫ Quantization is a basic technique in 
digital signal processing (DSP).

⚫ Converting continuous levels into 
discrete ones (analog-to-digital 
conversion).
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R. M. Gray and D. L. Neuhoff, "Quantization," in IEEE Transactions on Information 
Theory, vol. 44, no. 6, pp. 2325-2383, Oct. 1998, doi: 10.1109/18.720541.



Reducing Computational Complexity
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Multiplier and adder circuits with different precisions.

arXiv’23, Sehoon Kim et al.

Int4: Area/Power: 1x

Int8: Area: 3.5×, Power: 3.9×

Int32: Area: 43×, Power: 60×

FP32: Area: 96×, Power: 72×



IBM TrueNorth – Binary Neural Networks

Center of Computational Evolutionary Intelligence (CEI) 47

(2014)
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⚫ Target: Minimize the variance.

⚫ Solution: Adding a regularizer.
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Experimental Results
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68.8% reduction in core 
occupation

6.5×
speedup

[Best Paper Nomination, DAC’16, W. Wen et al.]



A Unified View of Pruning and Quantization
⚫ Selecting the optimal precision for each layer introduces a large and discrete 
design space.

⚫ For a fixed-point quantized matrix, when can its precision be reduced?
◦ MSB=0 for all elements: precision can reduce directly

◦ LSB=0 for all elements: precision can be reduced with scaling factor 2

⚫ MP quantization scheme can be explored by inducing structural bit-level sparsity
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[ICLR’21, H. Yang et al.]

Remove the MSB Column

Remove the LSB Column



Mix-Precision with Bit-Level Sparsity
⚫ We first perform 8-bit quantization.

⚫ The quantized model is converted into a 
bit-level representation
◦ Each bit-value is a trainable, floating-point value.

⚫ We apply bit-level group LASSO to the 
columns.
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[ICLR’21, H. Yang et al.]
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Mix-Precision with Bit-Level Sparsity
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[ICLR’21, H. Yang et al.]



Combining Quantization and Cache Compression 
for Memory-bound LLMs
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• LLMs are memory-intensive due to Keys and Values 
storage

• Previous quantization methods suffer from high 
compression overhead

• Integrate compression and decompression in cache-
level: 

• Low overhead

• Effective compression with hardware support

[ISCA’25, C. Feng et al.]



Towards Efficient AI…
⚫ One Device -> Computational Complexity for Inference & Training

◦ By reducing the complexity of the topology

◦ By reducing the complexity of the operation

⚫ Many devices -> Scale up Training Efficiency with Parallelism
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TernGrad – Gradients Histograms
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• Transfer the distribution instead of the raw values.
• Use 0, +1, -1 to represent the direction of the gradients.
• Convert 32-bit floating point into 3 levels.

[Oral, NeurIPS’17, W. Wen et al.]



TernGrad – Speedup
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[Oral, NeurIPS’17, W. Wen et al.]



Clustering
Distributed Mobile Training Architecture

• Transmission Reduction

Clustering for Distributed Mobile Training and Testing
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[Best Paper Award, DATE 2017, ICCAD 2017, J. Mao, et al.]

• Task Mapping



TernGrad to Binary Mask: FedMask
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The devices train and transmit 1-bit 
binary masks rather than the 32-bit 
weights!

…

⊙ ⊙ ⊙

Binary 
Masks

Personalized Models
[SenSys’21, A. Li et al.]



Evaluations

⚫ Dataset
◦ EMNIST, CIFAR10, HAR, Shakespeare

⚫ Baselines
◦ Standalone

◦ FedAvg

◦ Top-k (communication efficient)

◦ BNN-FedAvg (binary neural network+FedAvg)

◦ Per-FedAvg (FedAvg+MAML)

◦ LG-FedAvg (personalization+communciation)
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[SenSys’21, A. Li et al.]



FedBPT: Federated Black-box Prompt Tuning
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Demo with Llama2-7B
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User 
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[ICML’24, , Best Paper Award in AAAI Spring Syp. Jingwei Sun, et al.]



On-device Experimental Results of Llama2-7B
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Our Journey Towards Efficient AI
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What We Learned from This Journey
⚫ Our goal is to address the cost of storage, computation, and 
communication when deploying AI models through software and 
hardware co-design.

◦ With a unified optimization framework. 

⚫ The optimization should consider both software flexibility and 
hardware constraints.

◦ ◦The design could be multi-objective.
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TCASAI Call-for-Paper! 
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The IEEE Transactions on Circuits and Systems 
for Artificial Intelligence (TCASAI) is financially 
sponsored by the IEEE CASS, SSCS, and CEDA, and 
technically sponsored by the IEEE EDS and NANO

Scope
The IEEE Transactions on Circuits and Systems for 
Artificial Intelligence (TCASAI) publishes 
contributions related to circuits and systems for 
artificial intelligence, including circuit and 
electronic system design, implementation, and 
demonstration

Submission is now open!
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