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Recent Work: Family of Optical AI Accelerators

CNN, DNN, RNN Accelerators
• F. Sunny, M. Nikdast, S. Pasricha, “Cross-Layer Design for AI Acceleration with Non-

Coherent Optical Computing”, ACM GLSVLSI, 2023.
• F. Sunny, M. Nikdast and S. Pasricha, “RecLight: A Recurrent Neural Network 

Accelerator With Integrated Silicon Photonics”, IEEE ISVLSI, 2022.
• F. Sunny, A. Mirza, M. Nikdast, S. Pasricha, “CrossLight: A Cross-Layer Optimized 

Silicon Photonic Neural Network Accelerator”, IEEE/ACM DAC, 2021.

Generative AI Accelerators
• T. Suresh, S. Afifi, S. Pasricha, “Diffusion Neural Network Acceleration with Silicon 

Photonics” under review, 2025.
• T. Suresh, S. Afifi, S. Pasricha, “PhotoGAN: Generative Adversarial Neural Network 

Acceleration with Silicon Photonics” IEEE ISQED, 2025.

Graph Network Accelerators
• S. Afifi, F. Sunny, M. Nikdast, S. Pasricha, “Accelerating Neural Networks for Large 

Language Models and Graph Processing with Silicon Photonics”, IEEE/ACM DATE, 2024
• S. Afifi, F. Sunny, A. Shafiee, M. Nikdast, S. Pasricha, “GHOST: A Graph Neural Network 

Accelerator using Silicon Photonics”, ACM TECS (ESWEEK), 2023.

LLM/Transformer Accelerators
• S. Afifi, S. Pasricha, M. Nikdast, “Shedding Light on LLMs: Harnessing Photonic Neural 

Networks for Accelerating LLMs”, IEEE ICCAD, Nov 2024. 
• S. Afifi, F. Sunny, M. Nikdast, S. Pasricha, “TRON: Transformer Neural Network 

Acceleration with Non-Coherent Silicon Photonics”, ACM GLSVLSI, 2023.
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Transformer Neural Networks

D. Gufran, S. Tiku, S. Pasricha, “VITAL: Vision Transformer Neural Networks for Smartphone Heterogeneity Resilient and Accurate Indoor 
Localization”, IEEE/ACM Design Automation Conference (DAC), Jul 2023.

D. Gufran, S. Tiku, S. Pasricha, “STELLAR: Siamese Multi-Headed Attention Neural Networks for Overcoming Temporal Variations and Device 
Heterogeneity with Indoor Localization”, IEEE Journal of Indoor and Seamless Positioning and Navigation, 2024.

A. Singampalli, D. Gufran, S. Pasricha, “CIELO: Class-Incremental Continual Learning for Overcoming Catastrophic Forgetting with Smartphone-
based Indoor Localization”, IEEE Access, 2025

https://arxiv.org/abs/2302.09443
https://arxiv.org/abs/2302.09443
https://arxiv.org/abs/2312.10312
https://arxiv.org/abs/2312.10312
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Transformer Neural Networks

Recurrent 
Neural Networks

• Designed to processes sequential data
• Drawbacks:

Vanishing gradient: its “memory” not that strong 
when remembering old connections 

Transformer 
Neural Networks

• Uses the attention mechanism
• Swiftly established as the model 

of choice for NLP problems 
• Being integrated into vision tasks 
• Already implemented in many 

prominent applications 
• Challenge: 

Transformers can be massive, 
requiring high computational and 
data movement support 
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● Acceleration challenges
― Larger parameter counts than other neural network types, e.g., CNNs, RNNs, …
― Quadratic scaling of memory and computational demands with sequence length in self-attention
― Larger batch sizes exacerbate these overheads even further
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Transformer Model Acceleration
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● Minimizing data movement by computing closer to where data resides (inside DRAM) 
can significantly benefit high memory usage transformer workloads 
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In-DRAM Computing
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● In stochastic computing, numbers are represented by the probability of the 
appearance of “1”s in the bitstream  

● An n-bit binary number  represented stochastically by a 2𝑛𝑛 element vector
● Complex operations can be done using simple logic gates

― Amenable to simplified implementations, crucial for in-DRAM acceleration 
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Stochastic Computing

Multiply Operation
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AND OR

Integrating stochastic computing with in-DRAM computing 
offers an interesting new approach to accelerate LLMs
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● Implementing MAC operations within DRAM 
― Existing implementations decompose MAC into 

multiple functionally complete memory operation 
cycles (MOCs; activate-activate-precharge)

― Long latencies; a single MUL takes 1600ns in 
DRISA [S. Li et al;. MICRO 2017]

● Storage Overhead
― SC requires 𝑂𝑂(2𝑁𝑁) storage overhead as 

representing an 𝑁𝑁-bit real value requires 2𝑁𝑁 bits
― Can reduce parallelism

● Stochastic Computational Error
― Can impact the overall inference accuracy
― Trade-off exists between accuracy and hardware resources for encoding/decoding

● Stochastic-to-Binary (S_to_B) Conversion
― Frequent S_to_B conversions are needed
― Pop-Count (PC) creates several challenges related to area, power and latency
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Stochastic In-DRAM Acceleration Challenges 
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Background: DRAM Structure

 A DRAM chip has a hierarchical architecture:

Tile
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Chip

Bank

Subarray
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Background: DRAM Operation
 Read Operation

1. Pre-charge stage:
 bit-lines are pre-charged to 𝑣𝑣𝑑𝑑𝑑𝑑

2
2. Activate stage:

 Target cells are activated using the word-lines 
control signals (𝑾𝑾𝑾𝑾)

 Charge sharing phase: charge is distributed 
between the cell and bit-line capacitance

 Sense amplifier (SA) is activated to detect and 
amplify the subtle voltage variation

 Restore phase: The sensed voltage variation is 
then amplified by the SA and reinstated to the 
target cells

 Write Operation
 SAs read and amplify data from the DRAM chip’s 

internal bus
 Charge is written to target cells during Restore Phase

𝒗𝒗𝒗𝒗𝒗𝒗
𝟐𝟐

 𝒗𝒗𝒗𝒗𝒗𝒗
𝟐𝟐

 𝒗𝒗𝒗𝒗𝒗𝒗
𝟐𝟐

 𝒗𝒗𝒗𝒗𝒗𝒗
𝟐𝟐

 

𝟏𝟏

+ 𝜶𝜶 + 𝜶𝜶 − 𝜶𝜶 − 𝜶𝜶 1 1 0 0
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ARTEMIS Architecture
Design of 1 

BANK 128 Subarrays

128 Near-
Subarray 

Compute Units 
(NSC)

32 Tiles

11S. Afifi, I. Thakkar, S. Pasricha, “ARTEMIS: A Mixed Analog-Stochastic In-DRAM Accelerator for Transformer Neural 
Networks”, IEEE/ACM CASES (ESWEEK), Oct 2024.

https://arxiv.org/abs/2407.12638
https://arxiv.org/abs/2407.12638
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ARTEMIS Tile Architecture
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MAC Operation
 Multiplications
 Main Challenge: output precision
 Solution: deterministic stochastic multiplication technique 

using transition-coded-unary (TCU) numbers 
 TCU number: stochastic number with all the 1’s 

grouped (0000111111)
 MAE: 0.039, Max. Error: 0.123

1) Copy operand 1 to computation row #1

2) Copy operand 2 to computation row #2

S/A – Sense Amplifier. 
PU – Precharge Unit. 
TCU – transition-coded-unary

Co
m

pu
ta

ti
on

al
 R

ow
s

AND (stochastic 
multiply) operands using 
in-DRAM computing and 
result is stored in row #1

Multiplication Performed in two MOCs
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MAC Operation

Accumulations
 Main Challenges: Stochastic-based addition introduces large errors
 Solution: temporal analog accumulations

 MUL outputs are accumulated using analog capacitor Using 
stochastic-to-analog (S_to_A) unit

 Charge on the capacitor  corresponds to the number of ‘1’s
 Using H-shaped MOMCAP
 Area of MOMCAP = Tile Area
 MAE: 0.00085
 Max. Error: 0.0729
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S/A – Sense Amplifier. 
PU – Precharge Unit. 
S_to_A – Stochastic-to-Analog.
MOMCAP – Metal-Oxide-Metal Capacitor
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● We analyzed the voltage behavior of 
charge accumulation on the MOMCAP 
across a spectrum of capacitance values
― Modeled and simulated 128 bit-lines alongside 

the tile’s circuits utilizing LTSPICE
― Increased capacitance enhances the 

capacitor's ability to accommodate a greater 
number of accumulations

― But higher capacitance leads to a larger area 
overhead

― We selected a MOMCAP size aligning with 
ARTEMIS’ tile area of 338µm2, which 
corresponds to an 8pF capacitance

― This enables the  accumulation of 20 
consecutive dot products per MOMCAP
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MOMCAP Design

𝟖𝟖𝟖𝟖𝟖𝟖
Max. 𝟐𝟐𝟐𝟐 accumulations

𝟑𝟑𝟑𝟑𝟖𝟖𝟑𝟑𝟑𝟐𝟐

Each accumulation 
step  addition of 
one 128-bit number
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Analog to Binary Data Conversion

 Analog data stored in MOMCAPs need to be converted 
to binary numbers
 Analog-to-unary (A_to_U) unit: 
 Toggle B1 to connect MOMCAP to tile’s bit-lines

 Unary-to-binary (U_to_B) unit:
 S/As are repurposed as voltage comparators 

Priority encoder generates binary number
 MAE: 0.00037
 Max. Error: 0.0062

U
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S/A – Sense Amplifier. 
PU – Precharge Unit. 
A_to_U – Analog-to-Unary.

ARTEMIS efficiently mitigates unary-to-binary 
(U_to_B) data conversion challenges



EPIC 17

ARTEMIS: Near-Subarray Compute Unit
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Near-Subarray Compute Unit (NSC)

1. Reduction Operations
 Addition of partial sums

2. Softmax
 Comparator
 Adder/subtractor
 ln LUT
 exp LUT

3. B_to_TCU Decoder
 Prepare inputs to next 

operations/layers

B_to_TCU – binary to transition-coded-unary. 
LUT – look-up table. 
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Execution Pipeline

 Execution bottleneck: inter-bank 
data movement

 ARTEMIS pipelines the following: 
 In-situ MAC operations within the 

DRAM tiles, 
 Data movement using the row of 

latches 
 NSC units’ operations

ARTEMIS efficiently hides latencies of MAC and NSC operations
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Experimental Setup

• Detailed simulation-based analysis for each model and dataset
– Software mapping

– Simulate layer-wise mapping for each transformer model and dataset.
–  Hardware mapping

– Modeled all hardware components and in-DRAM operations
– Area estimates  using CACTI
– Per-tile circuits latencies  using LTSPICE

• Five Transformer models considered
– 8-bit quantization (128-bit for SC) used 

• Comparison to state-of-the-art accelerators
– TRANSPIM, ReBERT, HAIMA, FPGA_ACC, TPU, CPU, GPU 

Model Params Layers N Heads dmodel dff
Transformer-

base 52M 2 128 8 512 2048

BERT-base 108M 12 128 12 768 3072
Albert-base 12M 12 128 12 768 3072

ViT-base 86M 12 256 12 768 3072
OPT-350 350M 12 2048 12 768 3072
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Results: Computational Error and Accuracy

 To mitigate SC accuracy degradation 
issues:
 ARTEMIS avoids stochastic additions
 ARTEMIS utilized an optimized approach to 

stochastic multiplications

 We performed a detailed computational 
error analysis for each approximate block
 We performed a detailed accuracy 

analysis for the various models  
 Minimal accuracy degradation, averaging 

at 1.4% compared to FP32 and 0.5% 
compared to quantized 8-bit models

Model Dataset FP32 Q(8-bit) Q(8-bit) 
+ SC

Transformer-
base 70.90% 70.40% 69.45% 70.90%

BERT-base 87.00% 86.27% 85.92% 87.00%

Albert-base 86.07% 84.80% 84.51% 86.07%

ViT-base 97.60% 96.50% 96.20% 97.60%

OPT-350 18.07
(BLEU)

17.79
(BLEU)

17.49 
(BLEU)

18.07
(BLEU)

Block MAE Max Error Calibration 
Accuracy

Stochastic MUL 0.039 0.123 4.68
Analog ACC 0.0085 0.0729 6.88

A_to_B 0.00037 0.00062 11.38
Softmax 0.0020 0.0078 8.20
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Dataflow Sensitivity Analysis

 Results normalized to baseline model (layer_NP)

Employing token-based dataflow and pipelining 
optimizations simultaneously results in the 
highest speedup and least energy values

Token-based DF + PP 
improved speedup by 

16.2×

Token-based DF + PP 
reduced energy 

consumption by 3.5×

layer – layer-based dataflow
token – token-based dataflow
NP – no pipelining
PP – pipelining 
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Results: Speedup 
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Results: Energy Efficiency 
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● Speedup obtained by employing additional HBM stacks for processing workloads of 
increasing input sequence lengths 
― ARTEMIS scales up well with increasing memory usage
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Results: Scalability Analysis
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● ARTEMIS is the first in-DRAM hardware accelerator for transformer neural 
networks that combines stochastic and analog computing

● ARTEMIS can efficiently accelerate inference of Transformer neural networks 
with negligible accuracy degradation and overcome many transformer inference 
challenges

● Speedup improved by at least 3.6×

● Energy Efficiency improved by at least 1.8× 

● ARTEMIS introduces a promising paradigm for energy-efficient LLM 
acceleration in edge devices

26

Conclusions



Thank you
Sudeep Pasricha (sudeep@colostate.edu)
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