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Search as an important class of computation kernels
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Growing use of associative search in AI/ML workloads
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AI and memory wall 

4A. Gholami, et.al, IEEE Micro Journal, 2024

‘The evolution of the number of parameters (410x) of SOTA AI models 
over the years, along with the AI accelerator memory capacity (2x)’



Memory wall in conventional computing platforms

➢ Energy
➢ Latency/ 

throughput
➢ Security
➢ …

Operation Energy (pJ) Relative Cost
32 bit int ADD 0.1 1

32 bit int MULT 3.1 31
32bit 32 KB SRAM 5 50

32 bit DRAM 640 6400
M. Horowitz. Energy table for 45nm process, Stanford VLSI wiki. : https://sites.google.com/site/seecproject

Reduce memory transfer overhead is critical!
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In-memory search via 
content addressable memory



In-memory search: Content-addressable memory (CAM)

❑ CAM => Associative memory (AM) 

➢Support parallel search

➢Widely used in high-associativity cache, network router, etc.

➢Growing use in data analytics, machine learning, vector processing
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Choices of memory device technologies for CAMs

Desired properties:
• Large memory windows
• Multi-level data
• Tunable resistance levels
• Robustness
• Endurance
• Retention
• Speed, power, area
• …
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What memory devices 

should be used to 

construct CAM cells?



NVM opens doors for designing 
more sophisticated CAM functions



CAM data representations

Generic CAM array structure
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X. Sharon Hu, et al., IEDM, 2022
Xunzhao Yin, IEEE TED, 2020
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2T2R TCAM [1]

2Fe TCAM/MCAM/ACAM [7]6T2R ACAM [6]

[1] Haitong Li, et al., IEEE TED, 2021. [2] Seungchul Jung, et al., Nature, 2022. [3] Jing Li, et al.,IEEE JSSC 2013. [4] Viacheslav V. Fedorov, et al., IEEE TC, 
2016. [5] Arman Kazemi, et al., IEEE ISLEP, 2021. [6] Giacomo Pedretti, et al., Nat. Comm, 2021. [7] Xunzhao Yin et al., IEEE TED, 2020

CAMs based on different memory technologies

2T2PCM TCAM 
[3] 2Flash TCAM/MCAM 

[4,5]

16T CMOS TCAM 2T2MTJ TCAM [2]



Different types of match for T/MCAM
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Kasai, et al., CICC 2003

Same CAM cell design but different sensing circuits

Arman Kazemi, et al., Sci. Report, 2022 Liu Liu, et al., TCAS-1, 2023



𝑽𝑸 𝑽𝑻

2-FeFET MCAM design implement other distances
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❑ Conventonal B/TCAM uses Hamming distance; can other distances be 

implemented?

➢Yes!

❑ 𝑽𝑻 and 𝑽𝑸 assignment problem:

➢Find the optimal 𝑽𝑻 and 𝑽𝑸 for each state 

➢Minimize the error between each CAM distance and the desired distance

➢Define necessary constraints

𝐦𝐢𝐧
𝑽𝑸,𝑽𝑻,𝜶

𝑰 𝑽𝑸𝒊, 𝑽𝑻𝒋 − α × 𝒅𝒊𝒋 − 𝜷

𝟎 ≤ 𝑽𝑸𝒊 ≤ 𝑽𝑫𝑫, 𝑽𝑻𝒎𝒊𝒏 ≤ 𝑽𝑻𝒋 ≤ 𝑽𝑻𝒎𝒂𝒙, 𝑽𝑻𝒊 ≤ 𝑽𝑸𝒊, ∀𝒊, 𝒋 Subject to

CAM distance desired distance



CAM for complex and large-scale search



How big can a single CAM array be?

CAM 
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Supplementary Fig.8.  (a) Hamming distance calculation capability as a function of the TCAM 

array size (namely the word length). Hamming distances from 0 bits up to 8 bits are shown 

here as a representative study. (b)The effect of FeFET device-to-device variation on the 

sensing of the Hamming distance. The variation is extracted from the measured FeFET 

variation shown in Supplementary Fig.5. To generate the distribution, 50 different 1x8 TCAM 

arrays are simulated.  

Detecting the number of mismatched bits was also considered from a hardware 

perspective via simulation-based case studies. Again, as a representative example, 

Supplementary Fig.8a shows the match line voltage as a function of the TCAM word size for 

different Hamming distances between the query and a stored vector. This study suggests that 

Hamming distance detection of up to 8 bits can be well supported in an 1x64 TCAM array.  

Besides word length, another important factor should be considered is device-to-device 

variation in an FeFET. We simulated the impact of FeFET device variations on Hamming 

distance sensing. The results are shown in Supplementary Fig.8b. We take the measured 

device-to-device variations in Supplementary Fig.5 and simulate the variation of the match line 

voltage for various numbers of mismatched bits. At this early stage of FeFET development, 

device variation is not optimized. However, we can reliably differentiate all the 8 levels in a 

Kai Ni, et al., Nature Electronics, 2020.

Maximum detectable distance
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❑ How to support high dimensional vectors with small CAM subarrays?

❑ How do architectural solutions impact accuracy, energy, latency?



Hierarchical CAM architecture
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Match Type
Horizontal 

only
Vertical only

Horizontal & 

Vertical

Exact AND Merge AND and Merge

Best Voting Comparator N/A

Threshold N/A Merge N/A

Merge without error

Gather with approximation error!

No effective gather schemes proposed yet!!

Gather schemes and limitations
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Cross-layer design choices in CAM-based accelerators



CAMASim: CAM-based accelerator simulator
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https://github.com/ND-IMC/CAMASim-V1.0

https://github.com/ND-IMC/EvaCAM-V1.0
https://github.com/ND-IMC/EvaCAM-V1.0
https://github.com/ND-IMC/EvaCAM-V1.0
https://github.com/ND-IMC/EvaCAM-V1.0
https://github.com/ND-IMC/EvaCAM-V1.0
https://github.com/ND-IMC/EvaCAM-V1.0
https://github.com/ND-IMC/EvaCAM-V1.0


Case study and look forward



Case study: Memory-augmented neural network (MANN)
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❑ A CNN for generating high-
dimension embeddings

➢Embedding dimensions ranges 
from 64 to 512

❑ A CAM-based accelerator for 
classification

▪ High-dimension embedding → Horizonal gather is required

➢ Majority voting used here

▪ What is the best design configuration considering gather errors?



Impact of embedding and subarray size
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Best accuracy!
How about this 

one?

What if only 64-

col CAM is 

possible?



Impact of device variation and sensing limit
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Robust to noise!

Higher dimension 

embedding more 

sensitive to D2D 

variations

Smaller 

subarray sizes 

offer smaller 

sensing limit



Looking forward

Use of associative search in retrieval augmented generation for 

Large Language Model (LLM)

1/0 1/0 1/0

1/0 1/0 1/0

1/0 1/0 1/0

Data size exceeds the capacity of NVM 

based memory 
▪ Hardware-aware compression

▪ Hierarchical and hybrid CAM architectures

▪ Write overhead and endurance limitation

▪ Intelligent scheduling and mapping schemes

▪ NVM and analog circuit non-idealities
▪ …
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