Challenges and Opportunities in Accelerating Large-Scale Search Using NVM-based In-Memory Computing X. Sharon Hu (shu@nd.edu) **Department of Computer Science and Engineering University of Notre Dame**

JUMP

Search as an important class of computation kernels

Growing use of associative search in AI/ML workloads

Al and memory wall

'The evolution of the number of parameters (410x) of SOTA AI models over the years, along with the AI accelerator memory capacity (2x)'

Memory wall in conventional computing platforms

Reduce memory transfer overhead is critical!

In-memory search via content addressable memory

In-memory search: Content-addressable memory (CAM)

□ CAM => Associative memory (AM)

- Support parallel search
- >Widely used in high-associativity cache, network router, etc.
- >Growing use in data analytics, machine learning, vector processing

Choices of memory device technologies for CAMs

FeFETs

Silicide

Poly-Si

TiN

8nm HfO

SiO₂

p-Si

RRAM

What memory devices should be used to construct CAM cells?

Desired properties:

- Large memory windows
- Multi-level data
- **Tunable resistance levels**
- Robustness
- Endurance
- Retention
- Speed, power, area igodol
- ...

NVM opens doors for designing more sophisticated CAM functions

CAM data representations

Generic CAM array structure

CAMs based on different memory technologies

[1] Haitong Li, et al., IEEE TED, 2021. [2] Seungchul Jung, et al., Nature, 2022. [3] Jing Li, et al., IEEE JSSC 2013. [4] Viacheslav V. Fedorov, et al., IEEE TC, 2016. [5] Arman Kazemi, et al., IEEE ISLEP, 2021. [6] Giacomo Pedretti, et al., Nat. Comm, 2021. [7] Xunzhao Yin et al., IEEE TED, 2020

Different types of match for T/MCAM

Same CAM cell design but different sensing circuits

CAM Sub-Array EN Enable Circuit Delay Element Latch - C_{1,d} C_{1.1} - C_{1,2} Pre-charger ML $D \rightarrow D$ Latch c_{2,2} C2.1 ------ C_{2,d} ML Latch C32.2 C₃₂ C_{32.1} •••• Dataline decoder Dataline driver

Arman Kazemi, et al., Sci. Report, 2022

2-FeFET MCAM design implement other distances

Conventonal B/TCAM uses Hamming distance; can other distances be implemented?

≻Yes!

$\Box V_T$ and V_q assignment problem:

 \succ Find the optimal V_T and V_Q for each state

> Minimize the error between each CAM distance and the desired distance

> Define necessary constraints

CAM distance desired distance $\min_{V_{Q},V_{T},\alpha} I(V_{Qi},V_{Tj}) - \alpha \times d_{ij} - \beta$

Subject to $0 \leq V_{Qi} \leq V_{DD}$, $V_{Tmin} \leq V_{Tj} \leq V_{Tmax}$, $V_{Ti} \leq V_{Qi}$, $\forall i, j$

CAM for complex and large-scale search

How big can a single CAM array be?

□ Sub-array size, particularly # of columns, cannot be too big!

□ How to support high dimensional vectors with small CAM subarrays?

□ How do architectural solutions impact accuracy, energy, latency?

Hierarchical CAM architecture

Scatter and gather

Horizontal Gather When N>C How to combine partial results on different dimensions together?

Vertical Merge When K>R

How to find the match results across different groups of entries?

Match Type	Horizontal only	Vertical only	Horizontal & Vertical
Exact	AND	<mark>Merge</mark>	AND and Merge
Best	Voting	Comparator	N/A
Threshold	N/A	Merge	N/A

- Merge without error
- Gather with approximation error!
- No effective gather schemes proposed yet!!

Cross-layer design choices in CAM-based accelerators

CAMASim: CAM-based accelerator simulator

https://github.com/ND-IMC/CAMASim-V1.0

Case study and look forward

Case study: Memory-augmented neural network (MANN)

- A CNN for generating highdimension embeddings
 - Embedding dimensions ranges from 64 to 512
- □ A **CAM**-based accelerator for classification

- High-dimension embedding → Horizonal gather is required
 - > Majority voting used here
- What is the best design configuration considering gather errors?

Impact of embedding and subarray size

Impact of device variation and sensing limit

Looking forward

Use of associative search in retrieval augmented generation for Large Language Model (LLM)