

The Rise and Fall of Machine Learning for Computing and Optimization

Cunxi Yu University of Maryland, College Park

Nvidia Research

Roadmap of Design Automation

Focuses of EDA

- Methodologies
 - Bottom-up abstraction
 - Top-down design flow
 - (Combinatorial) optimizations
- Advantages
 - Easier R&D process
 - Scalability and Runtime

Challenges

- Miscorrelations due to abstractions
- Runtime complexity
- Lack of algorithmic parallelism

Revisit the "Failed" Internship

- Identifying the challenges
 - Miscorrelation due to abstraction
 - Expensive turnaround
 - Massive design space (design and tools)

Machine Learning in EDA and Optimizations

My personal roadmap

Machine Learning in EDA and Optimizations

My personal roadmap

(My Personal) Roadmap of ML for Chip Design

Synthesis Design Space Exploration via Proxy Models

- Static and online learning
 - Imaging, graph, time-series, incremental, RL, etc.
- Model-inference guided synthesis DSE
 - FlowGen [DAC'18, MLCAD'20], BoolGebra[DATE'24]

DAC'21]

Painting-on-Place [DAC'19]

Open-source: https://github.com/orgs/ Yu-Maryland/

Flow embedded as a *"binarized image"*

- High-level Synthesis [FCCM'21] `code-evolve`` in synthesis [DAC'21, ASP-

Is life always this beautiful?

Limitations of the First Generation

Case studies of logic synthesis

Limitations of the First Generation

Case studies of logic synthesis

Limitations of the First Generation

Case studies of logic synthesis

(base) [cunxi@yulab1 ~]\$ abc UC Berkeley, ABC 1.01 abc 01> flowtune (base) [cunxi@yulab1 ~]\$ abc UC Berkeley, ABC abc 01> resyn

Close-loop system integration is challenging

Yu, Cunxi. "Flowtune: Practical multi-armed bandits in boolean optimization." ICCAD'20 Neto, Walter Lau, Yingjie Li, Pierre-Emmanuel Gaillardon, and Cunxi Yu. "FlowTune: End-to-end Automatic Logic Optimization Exploration via Domain-specific Multi-armed Bandit." *TCAD'22*

Machine Learning in EDA and Optimizations

My personal roadmap

Example in Search – Technology Mapping

- Technology mapping
 - SLAP [DAC'21], FlowTune [ICCAD'20, TCAD'22], MapTune [ICCAD'24]
 - Counter-intuitive takeaway: mapping with partially selected

MapTune: Advancing ASIC Technology Mapping via Reinforcement Learning Guided Library Tuning Mingju Liu, Daniel Robinson, Yingjie Li, Cunxi Yu. IEEE/ACM International Conference On Computer Aided Design (ICCAD'24)

The EPFL Benchmark Results (2016 – 2023)

Normalized LUT-6 Count Over Versions for Each Design

The ISCAS 85/89/99 Benchmarks

Touching the Algorithms

ML or ML System for Combinatorial Optimization

Challenges of Prior Methods

Q1: How to get rid of training and data collection?

Map the problem as an optimization form

Q2: How to leverage the power of ML infrastructure?

Construct the problem as a differentiable optimization form

Q3: How to generalize the differentiable mapping ?

Differentiable mapping of a generic formal encoding

Machine Learning in EDA and COs

Differentiable Methods in Chip Design

DREAMPlace [Lin'19, Agnesina'23] LEGO Sizer, INSTA [Lu'24*2] DiffSAT [Zhang'24]

What's Next?

Formal Methods in the Loop (Chain of Thoughts & Proof)

Agentic Al Assistant for X

Ask anything

00700

E Spice Netlist Opt

Objective

· Enhance physical routability.

Google's AlphaEvolve

quality of results post-routing is improved as well

This is a test to optimize SPICE netlist. The key idea is to optimize the netlist design such tha the routability will be improved and the quality of results post-routing is improved as well.

Great, I've created a structured document for your SPICE netlist optimization test. Let me know if you'd like to expand on any of the optimization techniques, add experimental results, or include diagrams.

٨

.

The main goal of this optimization is to restructure or transform the SPICE netlist to:

· Reduce congestion during placement and routing stages

Conclusion

Thank you!

