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Roadmap of Design Automation

19 billion 35 billion 208 billion
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Focuses of EDA

» Methodologies
— Bottom-up abstraction
— Top-down design flow
— (Combinatorial) optimizations

» Advantages
—- EasierR&Dprocess——
_ Seatabit  Rant

» Challenges
— Miscorrelations due to abstractions
-~ Runtime complexity
— Lack of algorithmic parallelism



Revisit the “Failed” Internship

» ldentifying the challenges

— Miscorrelation due to abstraction
- Expensive turnaround
— Massive design space (design and tools)
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Task: Sequential Design Flow Exploration
* Varies more than 150% (e.g., 4.0 GHz vs. 2.7 GHz)
* Hard to predict (e.g., logic=4.0 GHz vs. physical=3.0 GHz)
* One evaluation on IBM PowerPC9: 7*20 hours
* One year: 52/400k = 0.013 %
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Machine Learning in EDA and Optimizations

» My personal roadmap

Differentiable

Proxy-Model Search Methods
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Machine Learning in EDA and Optimizations

» My personal roadmap

Proxy-Model

=




(My Personal) Roadmap of ML for Chip Design

' Use ML to solve one |
'syntheS|s problem? | ﬁf

| | Synthesis flows Images to be classified |
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Synthesis Design Space Exploration via Proxy Models

>

>

Static and online learning
- Imaging, graph, time-series, incremental, RL, etc.
Model-inference guided synthesis DSE
— FlowGen [DAC 18, MLCAD'20], BoolGebra|DATE 24]

- High-level Synthesis [FCCM’21] code-evolve ™

DAC'21]

Painting-on- Plac e [DAC’19]

GNN Step 1: Generate embedding

function through feature aggregation

and neural networks
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GNN Step 2: Learn embeddings
through supervised learning and
perform classification
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https://github.com/orgs/Yu-Maryland/
https://github.com/orgs/Yu-Maryland/
https://github.com/orgs/Yu-Maryland/
https://github.com/orgs/Yu-Maryland/

Is life always this
beautiful?



Limitations of the First Generation

» Case studies of logic synthesis

Transferability

Transfer Learning Z

Data
Auvailability

Integration

14nm Datasets

~80,000 x 3

7nm LVT/RVT Datasets

14nm Datasets

20,000 x 3

Decision Making in Synthesis cross Technologies using LSTMs and Transfer Learning. Cunxi Yu, Wang Zhou. MLCAD’20
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Limitations of the First Generation

» Case studies of logic synthesis

» Data .
Transferability 11 Integration
Availability
Design 14nm 7nm RVT 7nm LVT
64-bit Montgomery 99,997 99,997 99,997
64-bit ALU 100,000 100,000 100,000
128-bit AES core | 99,737 99,737 99,737 || ¢———= Another example of
LUSPEng - 20,000 20,000 “lack of
Stereovison() - 20,000 20,000 predictability” 1
Stereovisonl - 20,000 20,000
SHA - 20,000 20,000
raygentop - 20,000 20,000
OR1200 - 20,000 20,000
Boundtop - 20,000 20,000
blob_merge - 20,000 20,000
bgm - 20,000 20,000

10
Decision Making in Synthesis cross Technologies using LSTMs and Transfer Learning. Cunxi Yu, Wang Zhou. MLCAD’20



Limitations of the First Generation

» Case studies of logic synthesis

. Data
Transferabilit s Integration
Y Auvailability 8
(base) [cunxi@yulabl ~]$ abc (base) [cunxi@yulabl ~]$ abc
UC Berkeley, ABC 1.01 UC Berkeley, ABC
abc 01> flowtune abc 01> resyn

» Close-loop system integration is challenging

Yu, Cunxi. "Flowtune: Practical multi-armed bandits in boolean optimization.” ICCAD’20
Neto, Walter Lau, Yingjie Li, Pierre-Emmanuel Gaillardon, and Cunxi Yu. "FlowTune: End-to-end Automatic Logic Optimization Exploration via 11
Domain-specific Multi-armed Bandit." TCAD’22



Machine Learning in EDA and Optimizations

» My personal roadmap

Search
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Example in Search — Technology Mapping

» Technology mapping

- SLAP [DAC21], FlowTune [ICCAD'20, TCAD'22], Map Tune [ICCAD 24]
— Counter-intuitive takeaway: mapping with partially selected
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Mingju Liu, Daniel Robinson, Yingjie Li, Cunxi Yu. IEEE/ACM International Conference On Computer Aided Design (ICCAD'24)
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The EPFL Benchmark Results (2016 — 2023)

Normalized LUT-6 Count Over Versions for Each Design

Benchmark Name l i
1.0 4| —®— Adder 4
Alu control unit

Barrel shifter

—e— Coding-cavlc \

Decoder
—@— Divisor
0.9 Hypotenuse
12c controller
Int to float converter
Log2
—8— Lookahead XY router
Max
Memory controller
0.8 {|=e— Multiplier ~
Priority encoder \
—@— Round-robin arbiter
€ Sine
§ Square
© Square-root
§ 0.7 1 Voter
f% No improvements avg 5% avg 60%
reductions reductions
0.6 A
Orchestration
SLAP [TCAD24]
0.5 AC’21]
FlowGen FlowTune BoolGebra
[DAC|18] [ICCAP’20] [DATE"24]
o ~2020
~2018 Exact Methods ~2023
Fine-tune the classic (Formal) Era ‘ f ML for S ‘nthesis




The ISCAS 85/89/99 Benchmarks

Performance (Normalized)

2006~2018 Comparison of Optimization Techniques

| Prior SOTA
B FlowGen+FlowTune
Bl FlowGen+FlowTune+MapTune

1.0F

0.8

0.6

0.4r

0.2}

0.0

ISCAS 85 ISCAS 89 ITC 99 IWLS 2005
Benchmark Suites
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Touching the Algorithms

17



ML or ML System for Combinatorial Optimization

High Scalability
(greedy decisions)

Faster

High quality

(global optimization)

Slow runtime

Low quality - )
Better scheduling quality



Challenges of Prior Methods

Q1: How to get rid of training and data collection?

Map the problem as an optimization form

Q2: How to leverage the power of ML infrastructure?

Construct the problem as a differentiable
optimization form

Q3: How to generalize the differentiable mapping ?

Differentiable mapping of a generic formal encoding

19



Machine Learning in EDA and COs

Differentiable
Methods

Y

20



Differentiable Methods in Chip Design

R Iter* O

DREAMPIace
[Lin’19, Agnesina’23]

riseffall & unateness!  probs

LEGO Sizer, INSTA
[Lu’24*2]

. ) ()
— 6 Differentiate
— SDC/ILP n Pn
() 0 1 1
So—S4<0 ) e P
$1 —83=< 0 $ 3 1 1—ep
4 7 cpiepy
S2—83<0 5 1ip6p4 cmfcj:lcm
S3 - S4 S 0 2 1 171Cp1
pecn ‘ ’ Sy —S5< 0 8 i cp1 — cp1epy
Orders of magnitude faster than. Differentiable COs SmoothE (Best Paper)
IBM CPLEX, Google CP-SAT, Gurobi [ICML’24, ICML'25] [ASPLOS'25]
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RESI,DECT , compilation runtime than
[DAC’23, ICCAD’24] Google EdgeTPU Compiler
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What’s Next?

@ Scientist / Engineer
Initial program INITIALIZE “Concept Class”, Initial Examples

Evaluation code with components
to evolve

Prompt template Choice of existing
and configuration or custom LLMs

E— — N ' l — _— o l Candidate

| Il | I |
i I I [ - \
->_ —
1 ' €k I : = — Concept
| Prompt sampler ] | LLMs ensemble ! |Program database| Best program >
L | L |

! i i LEARNING VERIFICATION
””””””””””””””””””””””””””””””””””””””” ALGORITHM | < ORACLE

Distributed Controller Loop

database.add(child_program, results)

! 1

i | Counterexample

| parent_program, inspirations = database.sample() } p

! prompt = prompt_sampler.build(parent_program, inspirations) | l

! diff = 1lm.generate(prompt) ]

| child _program = apply diff(parent_program, diff) I . . .

} results = _execute(childﬁprogrgm) i Learnlng Falls Learnlng SUCCGECIS
I

| I

| |

S AlphaEvolve

Formal Methods in the Loop
Google’s AlphaEvolve (Chain of Thoughts & Proof)

quality of results post-routing is improved as well

© Spice Netlist Opt

This is a test to optimize SPICE netlist. The key idea is to optimize the netlist design such that
the routability will be improved and the quality of results post-routing is improved as well.

Objective

The main goal of this optimization is to restructure or transform the SPICE netlist to: .
+ Reduce congestion during placement and routing stages.
Assistant for X

Great, I've created a structured dacument for your SPICE netlist optimization test. Let me know if you'd

like to expand on any of the optimization techniques, add experimental results, or include diagrams.

G0 QdYy
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Conclusion

| Hopefully, | am not
- experlencmg a devolution

152 layers |

I 22 layers l [ 19 Iayers

\67

N l l

ILSVRC'15 ILSVRC'14 ILSVRC'14
ResNet GoogleNet VGG

"M i

Synthesis flows lmages to be classified
into different classes-QoR classes

8 layers 8 layers
HH

ILSVRC'13 ILSVRC'12
AlexNet
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Thank you!
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