The Rise and Fall of Machine Learning for
Computing and Optimization

Cunxi Yu
University of Maryland, College Park
Nvidia Research

NORTHROP
GRUMMAN

AMDA @ FPGA //\ @ A.JamEs CLARK

. R .
W, N DARPA XILINX &AInVIDIA. AMPERE. “® 5Ciiool OF ENGINEERING

Roadmap of Design Automation

19 billion 35 billion 208 billion

&« A17
Designed By Hand Growing
Earliest EDA tools: “ABC,Yosys, TDS,VPR,LegUp” Let’s automate it,
"Berkeley VLSI Tools Tarball’ “Xilinx, Intel(Altera)” again!
103 107~9
“Espresso, SIS, Magic”
1980s 1990s 2000s Today _
“Quine-McCluskey”,
1956

10° 10°

Birth of Commercial
EDA

Cadence, Synopsys, Mentor, etc.

A primary barrier of
hardware innovation
Automation
Increasing manual efforts of automations

Focuses of EDA

» Methodologies
— Bottom-up abstraction
— Top-down design flow
— (Combinatorial) optimizations

» Advantages
—- EasierR&Dprocess——
_ Seatabit Rant

» Challenges
— Miscorrelations due to abstractions
-~ Runtime complexity
— Lack of algorithmic parallelism

Revisit the “Failed” Internship

» ldentifying the challenges

— Miscorrelation due to abstraction
- Expensive turnaround
— Massive design space (design and tools)

|

|

>
)
>
L 4
ENTITY test High-level
rta:in; .
end ENTITY: Synthesis
v ,
Logic
Synthesis
¥
[I I n \
. Physical
AR - E Design

J

[Formal Verification]

Task: Sequential Design Flow Exploration
* Varies more than 150% (e.g., 4.0 GHz vs. 2.7 GHz)
* Hard to predict (e.g., logic=4.0 GHz vs. physical=3.0 GHz)
* One evaluation on IBM PowerPC9: 7*20 hours
* One year: 52/400k = 0.013 %

1

1

F1
[¥5)
e
n

F1
[¥5)
e
n

Machine Learning in EDA and Optimizations

» My personal roadmap

Differentiable

Proxy-Model Search Methods

o™

Machine Learning in EDA and Optimizations

» My personal roadmap

Proxy-Model

=

(My Personal) Roadmap of ML for Chip Design

' Use ML to solve one |
'syntheS|s problem? | ﬁf

| | Synthesis flows Images to be classified |
152 layers | into different elasses-QoR labels E

\
A
\
I 22 layers [19 Iayers
\ 67

3.57 8 layers 8 layers
______________ : — - - - E - -

ILSVRC'15 ILSVRC'14 ILSVRC'14 ILSVRC'13 ILSVRC'12
ResNet GoogleNet VGG AlexNet

Synthesis Design Space Exploration via Proxy Models

>

>

Static and online learning
- Imaging, graph, time-series, incremental, RL, etc.
Model-inference guided synthesis DSE
— FlowGen [DAC 18, MLCAD'20], BoolGebra|DATE 24]

- High-level Synthesis [FCCM’21] code-evolve ™

DAC'21]

Painting-on- Plac e [DAC’19]

GNN Step 1: Generate embedding

function through feature aggregation

and neural networks

e el

A2
g A%

) :xt ()
o4 “.—~

GNN Step 2: Learn embeddings
through supervised learning and
perform classification

alle—g(
[?/\\o[;]
(1) (1)
1

DSP
+
+
DSP
DsSP &

ABC

Open-source:
https:/ /github.com/orgs/
Yu-Maryland/

(o= T o o E o o T S Vg |

Flow embedded as a
‘binarized image”

in synthesis [DAC’21, ASP-

SLAP Overview

Read Circuit

——

Prepare for Mapping —
\ J

Nodes
ing
uts
Features

Read Cuts <«
A 4
ABC Matching
Algorithm
h 4

Mapped Netlist

https://github.com/orgs/Yu-Maryland/
https://github.com/orgs/Yu-Maryland/
https://github.com/orgs/Yu-Maryland/
https://github.com/orgs/Yu-Maryland/

Is life always this
beautiful?

Limitations of the First Generation

» Case studies of logic synthesis

Transferability

Transfer Learning Z

Data
Auvailability

Integration

14nm Datasets

~80,000 x 3

7nm LVT/RVT Datasets

14nm Datasets

20,000 x 3

Decision Making in Synthesis cross Technologies using LSTMs and Transfer Learning. Cunxi Yu, Wang Zhou. MLCAD’20

<=100 ~960,000
Update Testing
weights v

y =l| Updated Model l I
1

Accuracy (%)

] M
3 NS ﬁ”‘* A

e \ / \\.|./’+

90 - \\\
* e

801
*
70 : , , — *\)
(2

of ?f/(\ \5\0(\ \1\6\00—;'\»\ g (\‘09 \,7«0 6‘09 «\e(g\og((‘ o© ec);\fl NS

\,\) ‘e‘e e (e A a

Limitations of the First Generation

» Case studies of logic synthesis

» Data .
Transferability 11 Integration
Availability
Design 14nm 7nm RVT 7nm LVT
64-bit Montgomery 99,997 99,997 99,997
64-bit ALU 100,000 100,000 100,000
128-bit AES core | 99,737 99,737 99,737 || ¢———= Another example of
LUSPEng - 20,000 20,000 “lack of
Stereovison() - 20,000 20,000 predictability” 1
Stereovisonl - 20,000 20,000
SHA - 20,000 20,000
raygentop - 20,000 20,000
OR1200 - 20,000 20,000
Boundtop - 20,000 20,000
blob_merge - 20,000 20,000
bgm - 20,000 20,000

10
Decision Making in Synthesis cross Technologies using LSTMs and Transfer Learning. Cunxi Yu, Wang Zhou. MLCAD’20

Limitations of the First Generation

» Case studies of logic synthesis

. Data
Transferabilit s Integration
Y Auvailability 8
(base) [cunxi@yulabl ~]$ abc (base) [cunxi@yulabl ~]$ abc
UC Berkeley, ABC 1.01 UC Berkeley, ABC
abc 01> flowtune abc 01> resyn

» Close-loop system integration is challenging

Yu, Cunxi. "Flowtune: Practical multi-armed bandits in boolean optimization.” ICCAD’20
Neto, Walter Lau, Yingjie Li, Pierre-Emmanuel Gaillardon, and Cunxi Yu. "FlowTune: End-to-end Automatic Logic Optimization Exploration via 11
Domain-specific Multi-armed Bandit." TCAD’22

Machine Learning in EDA and Optimizations

» My personal roadmap

Search

12

Example in Search — Technology Mapping

» Technology mapping

- SLAP [DAC21], FlowTune [ICCAD'20, TCAD'22], Map Tune [ICCAD 24]
— Counter-intuitive takeaway: mapping with partially selected

PRy PN PRGN Iy | PR Sy || O R S R

i Al e e

~

1" g
Current ADP Current Best Results

sult

Fina

Q 1T A 11
0.90

12— —

1.0
o 0.8
—0.6
To4
0.2
0.0

0.480.4'

ASAP7(D) ASAP7(;

Area (um?)

4 5
Iteration
Current Best Cells (Black)

Library (Mappe‘r)

(g) s838a

Zoomed-In

80 ‘;D
Delay (ps)

ﬁn .

LLLeEEIb el AO331x2

AO0I221x1 Tlelbiribe-L}

MapTune: Advancing ASIC Technology Mapping via Reinforcement Learning Guided Library Tuning

Mingju Liu, Daniel Robinson, Yingjie Li, Cunxi Yu. IEEE/ACM International Conference On Computer Aided Design (ICCAD'24)

A0332x1 | A0332x2

LllF¥FidiE] AOI22x1

Library (Mapper)

(h) sin

] Best MAB 7] BestQL

e far i

1 Best MAB /A Best QL

091gg9 0.91091
0.820.82

KY130(A) GF180(D) GF180(A)

13

The EPFL Benchmark Results (2016 — 2023)

Normalized LUT-6 Count Over Versions for Each Design

Benchmark Name l i
1.0 4| —®— Adder 4
Alu control unit

Barrel shifter

—e— Coding-cavlc \

Decoder
—@— Divisor
0.9 Hypotenuse
12c controller
Int to float converter
Log2
—8— Lookahead XY router
Max
Memory controller
0.8 {|=e— Multiplier ~
Priority encoder \
—@— Round-robin arbiter
€ Sine
§ Square
© Square-root
§ 0.7 1 Voter
f% No improvements avg 5% avg 60%
reductions reductions
0.6 A
Orchestration
SLAP [TCAD24]
0.5 AC’21]
FlowGen FlowTune BoolGebra
[DAC|18] [ICCAP’20] [DATE"24]
o ~2020
~2018 Exact Methods ~2023
Fine-tune the classic (Formal) Era ‘ f ML for S ‘nthesis

The ISCAS 85/89/99 Benchmarks

Performance (Normalized)

2006~2018 Comparison of Optimization Techniques

| Prior SOTA
B FlowGen+FlowTune
Bl FlowGen+FlowTune+MapTune

1.0F

0.8

0.6

0.4r

0.2}

0.0

ISCAS 85 ISCAS 89 ITC 99 IWLS 2005
Benchmark Suites

15

10° 4 =

- s T by
Applications in Formal Verification .| i
1 7" 6 orders

» Boolean Reasoning Es L

T width ot mateigiers
Structural information
| AIG topology /'T . /'T‘EII (}\f\\ Task 1: Root classification
. oo oD &O N \\ Multi-label
— - - - Task 2: XOR classification a:m;tated —, Adder
Functional information / PR o 2\\ AlIG extraction
" - N N
. PIfPO,'mterme_dlatenndes_ E-]M |:|:|:][><1|:|:|] M
::':;T:;::i:;"pumge * = e - 22 NN Task 3: MA] classification
{a) Overview of Gamora
2 * ”
-])
ol =) @ ;
e % GAMORA (Best Paper) [IDAC’23]
@ L d -
e P a'e Ny TN HOGA [DAC24]
e , < [~]
o _ o o \Mismatch || €
DX g D€ - #5327 Viispradiction
(c) Multi-label annotated AIG (d) Adder tree extracted from the (e) Adder tree extracted from the
(ground truth) annotated AIG (ground truth) d AIG (predicted by G)
XOR@» MA]@» Rootof Adder €» > Other Full Adder 1) Half Adder @100 o
f Abstraction-level
I‘ ReVEAL Multiplier Achitecture = —™ GNN+SAT+CA
| S Inference
|
.~ 2-3 orders AIG/BLIF 5
C - —m»| SAT+CA
E .
£, Conventional ;:tomlct Blo‘ciks Low Scalability
E Tools econstruction High M. U
: o [- A | g Runtime

REVEAL [IWLS’25]

16

50
Bitwidth

Touching the Algorithms

17

ML or ML System for Combinatorial Optimization

High Scalability
(greedy decisions)

Faster

High quality

(global optimization)

Slow runtime

Low quality -)
Better scheduling quality

Challenges of Prior Methods

Q1: How to get rid of training and data collection?

Map the problem as an optimization form

Q2: How to leverage the power of ML infrastructure?

Construct the problem as a differentiable
optimization form

Q3: How to generalize the differentiable mapping ?

Differentiable mapping of a generic formal encoding

19

Machine Learning in EDA and COs

Differentiable
Methods

Y

20

Differentiable Methods in Chip Design

R Iter* O

DREAMPIace
[Lin’19, Agnesina’23]

riseffall & unateness! probs

LEGO Sizer, INSTA
[Lu’24*2]

.) ()
— 6 Differentiate
— SDC/ILP n Pn
() 0 1 1
So—S4<0) e P
$1 —83=< 0 $ 3 1 1—ep
4 7 cpiepy
S2—83<0 5 1ip6p4 cmfcj:lcm
S3 - S4 S 0 2 1 171Cp1
pecn ‘ ’ Sy —S5< 0 8 i cp1 — cp1epy
Orders of magnitude faster than. Differentiable COs SmoothE (Best Paper)
IBM CPLEX, Google CP-SAT, Gurobi [ICML’24, ICML'25] [ASPLOS'25]
Improved energy efficiency and
RESI,DECT , compilation runtime than
[DAC’23, ICCAD’24] Google EdgeTPU Compiler
B - e TR o eaies ™ \Jorall dashed acs V—
ST hse ise from = v o, = loss;
D ;'Ee' fall ,@.,’ﬂi LLM Vs 1
i B T et C, = lossy
L a4 & o g p2 | B e C : loss
.ﬂ..ﬂ..d_:.& .p_h. Un O%:. e —> loss,
! arcsaresplitby | libCell < G

MaxSAT Layer

DiffSAT
[Zhang'24]

What’s Next?

@ Scientist / Engineer
Initial program INITIALIZE “Concept Class”, Initial Examples

Evaluation code with components
to evolve

Prompt template Choice of existing
and configuration or custom LLMs

E— — N ' l — _— o l Candidate

| Il | I |
i I I [- \
->_ —
1 ' €k I : = — Concept
| Prompt sampler] | LLMs ensemble ! |Program database| Best program >
L | L |

! i i LEARNING VERIFICATION
””””””””””””””””””””””””””””””””””””””” ALGORITHM | < ORACLE

Distributed Controller Loop

database.add(child_program, results)

! 1

i | Counterexample

| parent_program, inspirations = database.sample() } p

! prompt = prompt_sampler.build(parent_program, inspirations) | l

! diff = 1lm.generate(prompt)]

| child _program = apply diff(parent_program, diff) I . . .

} results = _execute(childﬁprogrgm) i Learnlng Falls Learnlng SUCCGECIS
I

| I

| |

S AlphaEvolve

Formal Methods in the Loop
Google’s AlphaEvolve (Chain of Thoughts & Proof)

quality of results post-routing is improved as well

© Spice Netlist Opt

This is a test to optimize SPICE netlist. The key idea is to optimize the netlist design such that
the routability will be improved and the quality of results post-routing is improved as well.

Objective

The main goal of this optimization is to restructure or transform the SPICE netlist to: .
+ Reduce congestion during placement and routing stages.
Assistant for X

Great, I've created a structured dacument for your SPICE netlist optimization test. Let me know if you'd

like to expand on any of the optimization techniques, add experimental results, or include diagrams.

G0 QdYy

22

+ 2 Tooks] ¢ °

Conclusion

| Hopefully, | am not
- experlencmg a devolution

152 layers |

I 22 layers l [19 Iayers

\67

N l l

ILSVRC'15 ILSVRC'14 ILSVRC'14
ResNet GoogleNet VGG

"M i

Synthesis flows lmages to be classified
into different classes-QoR classes

8 layers 8 layers
HH

ILSVRC'13 ILSVRC'12
AlexNet

23

Thank you!

NORTHROP
GRUMMAN

A.JAMES CLARK

® SCHOOL OF ENGINEERING

£ \’~\N‘(" e A M D a i n te | u) FPGA A SR
L (/) | JXDARPA = 00
& 3 4 ’7-'\:\'(L =

XILINX &AnviDIA AMPERE.

	Slide 0: The Rise and Fall of Machine Learning for Computing and Optimization
	Slide 1: Roadmap of Design Automation
	Slide 2: Focuses of EDA
	Slide 3: Revisit the “Failed” Internship
	Slide 4: Machine Learning in EDA and Optimizations
	Slide 5: Machine Learning in EDA and Optimizations
	Slide 6: (My Personal) Roadmap of ML for Chip Design
	Slide 7: Synthesis Design Space Exploration via Proxy Models
	Slide 8: Is life always this beautiful?
	Slide 9: Limitations of the First Generation
	Slide 10: Limitations of the First Generation
	Slide 11: Limitations of the First Generation
	Slide 12: Machine Learning in EDA and Optimizations
	Slide 13: Example in Search – Technology Mapping
	Slide 14: The EPFL Benchmark Results (2016 – 2023)
	Slide 15: The ISCAS 85/89/99 Benchmarks
	Slide 16: Applications in Formal Verification
	Slide 17: Touching the Algorithms
	Slide 18: ML or ML System for Combinatorial Optimization
	Slide 19: Challenges of Prior Methods
	Slide 20: Machine Learning in EDA and COs
	Slide 21: Differentiable Methods in Chip Design
	Slide 22: What’s Next?
	Slide 23: Conclusion
	Slide 24: Thank you!

