

Highest availability needs in-field debugging

Albrecht Mayer, Distinguished Engineer Infineon automotive microcontroller MPSoC 2025, Megeve

In-field debugging

ESA: First time right SpaceX: Let's do it

Complex systems:

You can reduce the number of failures in the field by testing, but some effects will not be foreseeable

How to learn best from field failures?

https://spacenews.com/nasa-investigation-linked-2015-falcon-9-failure-to-design-error/

Table of contents

Table of contents

Motivation for in-field debugging

- Availability is affected more by software issues than by hardware faults: factor 10x
- Understanding very rare issues
- Traditional diagnosis paradox:
 Writing error routines for unknown errors
- Non-intrusive hardware on-chip trace has no fundamental conflict with safety

Source: Computer, vol. 54, no. 08, https://www.computer.org/csdl/magazine/co/2021/08

Detection of faults for HW

- FIT Failures per 10E9 operating hours
- 1 FIT ~ 1 failure for 100000 cars with 10000h operation during lifetime
- Safety FIT rate != availability FIT rate
- Safety FIT := undetected dangerous faults
- Availability FIT := undetected + detected dangerous faults (safe state)
- AURIX[™] class chip has
 < 1 FIT safety FIT rate
 100x higher availability relevant FIT rate

Fail-operational on one slide: Random HW faults are no problem

The dark zone of the availability FIT rate

Availability FIT rate: ~1000 FIT for HW + SW

OEMs: > 90% of availability issues by software

Fail-operational on one slide: Systematic software faults are a big problem

Ariane 5 software bug You can be sure they tried hard to avoid this

Old story and they didn't use AURIX there can be always surprises

52 53 54 55 MTV SP			
52 53 54 55 MTV SP			
53 54 55 MV SP			
54 55			
55			
MTV SP			
O			
O			
Data Trace State Trace All Enabled No State Condition In Range Qualification In Range Qualification In Range Qualification 0xF0038990 SRC_GPSR00 All Bus Masters			

- upt module: Write value of LDMST can get lost ccess close to each other
- due to AURIX trace features:

 \times

Syn_

- S
- Please note: Modifying SRC registers with different CPUs is strange

Table of contents

In-field debugging

Restrictions

- Safety → trace only
- Security \rightarrow access protection
- Cost → limited trace resources

Opportunities

- "Test stand" with thousands of units
- "Text stand" with unexpected test vectors
- Find bugs before there is an accident

Strategy

- \rightarrow Enable existing tools where possible
- → Create new methods and tools where needed

Problem and solution space from SW programmer perspective

infineon

Anomaly (SW bug, intrusion) analysis

Big data AI analysis

 \rightarrow software update

Service improvement

Example AURIX™ TC4x

Safe MCDS trace, controlled by a secured environment

Advanced TC4x features:

✓ Parallel time aligned multi-core trace

Cloud

٠

- ✓ Tracing in a safe system
- ✓ Secured remote access
- ✓ Ethernet connection for tooling
- ✓ Seamless integration of all cores including security core
- ✓ Secured debug isolation for a virtualized system

Nothing has happened (yet)

- > Debugging needs a symptom (car falls off cliff)
- > Safe system design: Check if close to the cliff

Demo example: Triggering on low supply voltage

AURIX[™] OTGB trace source

- On-chip TriGger Bus
- 2x 16 bit logic analyzer
- Mux structure \rightarrow any two
- Timer, ADC, PMS, etc.

Demo example: Triggering on low supply voltage

Eile <u>D</u> €	evice MCDS	<u>E</u> dit <u>H</u> elp		•							
-12	Time [ns]	Time [ticks]	Ticks	Opoint	Origin	Data	Operation	Address	Symbol	SO	Comment
-11	0.000.500.188	-18	1	CPU0	CPU0 V3		IP CALL	800153CC 8001552C	core0_vm3_main loop_core0_vm3	44 0	CALL 0x160 NOP
-10	0.000.500.208	-13	5	CPU1	CPU1 V2		IP RET	80400BD2 80400A1C	loop_core1_vm2 core1_vm2_main	6 48	RET LD.HU D15, [A10], 0x0
-9	0.000.500.212	-12	1	CPU0	CPU0 V3		IP RET	80015532 800153D0	loop_core0_vm3 core0_vm3_main	6 48	RET LD.HU D15, [A10], 0x0
-8	0.000.500.216	-11	1	CPU1	CPU1 V2		IP CALL	80400A18 80400BCC	core1_vm2_main loop_core1_vm2	44 0	CALL 0x1b4 NOP
-7	0.000.500.220	-10	1	CPU0	CPU0 V3		IP CALL	800153CC 8001552C	core0_vm3_main loop_core0_vm3	44 0	CALL 0x160 NOP
-6	0.000.500.240	-5	5	CPU0	CPU0 V3		IP RET	80015532 800153D0	loop_core0_vm3 core0_vm3_main	6 48	RET LD.HU D15, [A10], 0x0
-5	0.000.500.240	-5		CPU1	CPU1 V2		IP RET	80400BD2 80400A1C	loop_core1_vm2 core1_vm2_main	6 48	RET LD.HU D15, [A10], 0x0
-4	0.000.500.248	-3	2	CPU0	CPU0 V3		IP CALL	800153CC 8001552C	core0_vm3_main loop_core0_vm3	44 0	CALL 0x160 NOP
-3	0.000.500.252	-2	1	CPU1	CPU1 V2		IP CALL	80400A18 80400BCC	core1_vm2_main loop_core1_vm2	44 0	CALL 0x1b4 NOP
-2	0.000.500.256	-1	1	CPU2	CPU2 V0	00006001	STATE		ISR_END_NESTED2		IEN=0 NESTED=1 VM=0 PRS=0
-1	0.000.500.260	0	1	OTGB	noO1 PMS	0000015D	010				PMS_TS16_PMS
0	0.000.500.260	0		OTGB	OTGB		Trig OTGB				u16 <= 0x015D
1	0.000.500.264	1	1	CPU2	CPU2 V0	00006011	STATE	-		_	IEN=1 NESTED=1 VM=0 PRS=0
als (OTGB)					-		×)15532 153D0	loop_core0_vm3 core0_vm3_main	6 48	RET LD.HU D15, [A10], 0x0
Source		OTGB0 So	OTGB0 Source			OTGB10 Trigger			loop_core1_vm2	6	RET
ed	-	PMS 👻			▼ Trig	Trigger Trace Recording -			core1_vm2_main	48	LD.HU D15, [A10], 0x0
		PMS TS16_PMS			No S	No State Condition		153CC 1552C	core0_vm3_main loop_core0_vm3	44	CALL 0x160 NOP
		1	1 OTSC0.B0PMS			u16 <= 0x015D			core1_vm2_main loop_core1_vm2	44 0	CALL 0x1b4 NOP
)15532 153D0	loop_core0_vm3 core0_vm3_main	6 48	RET LD.HU D15, [A10], 0x0
								15200	corol vm3 main	11	CALL 0v160

In-field debugging with on-chip trace and standard debugger

Table of contents

Summary

- In-field debugging is needed for very low failure rates
 ... but can also "just" improves customer experience
- On-chip hardware trace is very flexible, safe and secured (for TC4x)
- Can reuse proven debug tooling
- New AI based debug tooling needed for in-field 100k units parallel "testing"