
1 © 2025 Fujitsu Limited© 2025 Fujitsu Limited

Building the LLM model
on the supercomputer Fugaku
toward the AI for Science

Fujitsu Ltd.
Takahide Yoshikawa

2 © 2025 Fujitsu Limited

F230-75APU

PRIMERGY
BX900

HX600

VPP5000

VPP300/700

AP3000
PRIMEPOWER

HPC2500

PRIMEQUEST

FX1

SPARC
Enterprise

VPP500

AP1000

VP Series

PRIMERGY
RX200

Vector

Scalar
Cluster

PRIMEHPC FX10

PRIMERGY
CX1000

PRIMEHPC FX100

History of our Supercomputer System

Fugaku*2
World’s Fastest Prize

(Jun/Nov 2020, Jun/Nov 2021, TOP500)

K computer*2

World’s Fastest Prize
（Jun/Nov, 2011,TOP500)

Gordon Bell Prize
(2011, 2012)

*1 NWT Numerical Wind Tunnel
Co-development with NAL
*2 Co-development with RIKEN First Supercomputer

in Japan (1977)

World’s Fastest Prize
（Nov. 1993,TOP500)
Gordon Bell Prize
(1994, 1995,1996)

NWT*1

Technologies based on
inherited and accumulated

from the past

3 © 2025 Fujitsu Limited

Fugaku System

CPU CMU BoB RackShelf System

Unit # of CPUs Description

CPU 1 Single socket node with HBM2 & Interconnect

CMU 2 CPU Memory Unit: 2x CPU

BoB 16 Bunch of Blades: 8x CMU

Shelf 48 3x BoB

Rack 384 8x Shelf (Front 4, Back 4)

System 158,976
432Racks×384CPU＝165,888≠158,976
396Racks are Full, 36Racks are Half(192CPUs)

4 © 2025 Fujitsu Limited

Fugaku System Specification

900km

Fugaku System

of Rack 432 Racks

of Nodes 158,976 Nodes

Total Length of Interconnect
Cable

≧900 km

Footprint 1,920 m2

Peripherals

CTRL, Management PRIMERGY ≧140

Network Ethernet Switch 512

InfiniBand Switch 58

Megève - Madrid

1030 km

Megève - Berlin

890 km

5 © 2025 Fujitsu Limited

Applications of Fugaku

● High Performance Computing
for Science
● Computer Simulations:

Fluid Dynamics, Molecular Dynamics,
Electro Magnetic, Quantum Chemistry etc.

● AI/ML
● Accelerating 13B parameter LLM on Fugaku

● Training 400B Japanese tokens in 4 months using
13,824 nodes

● Achieving an average score of 5.5 on the Japanese
MT-Bench. This score is the highest among LLM for
the Japanese language

Courtesy of RIKEN, Suzuki Motor Corp.

Courtesy of Kobe Univ, Honda R&D, RIKEN

6 © 2025 Fujitsu Limited6 © 2025 Fujitsu Limited

1. Characteristics of LLM
 (Large Language Model)

2. Technology to Accelerate Training
3. Accelerating Techniques for Fugaku LLM
4. Process and Achievements of Fugaku LLM
5. Summary

7 © 2025 Fujitsu Limited

Large Language Model (LLM)

●AI Model for natural language processing

● Uses: Generating Text, Answering Questions, Summarizing Text, Translation etc.
● Most of recent LLMs are based on Transformer.

● Models are trained by large datasets.

● A Huge # of parameters are required.

Large Datasets

LLM Mode with
A Huge # of Params

Transformer

Translate
“I can speak French.”
into French.

Je

Transformer

Translate
“I can speak French.”
into French.
Je

peux

Transformer

Translate
“I can speak French.”
into French.
Je peux

parler

Transformer

Translate
“I can speak French.”
into French.
Je peux parler

français

Transformer

Translate
“I can speak French.”
into French.
Je peux parler français

.

8 © 2025 Fujitsu Limited

Scaling Laws

Better

● Claiming a power law relationship among
 Accuracy ∝ Computational Complexity, Amount of Data, Parameters

● Creating more accurate models = Scaling the factors (Compute, Dataset, Params)

● Various high-accurate models with a huge # of params are proposed.

● Requiring enormous amount of computing resources

https://arxiv.org/abs/2001.08361

9 © 2025 Fujitsu Limited

How much resources are required?

1. Huge amount of Computation
● Training of GPT-3 with 175B params

● 1 month for A100x8,000

● Training of GPT-4 with 1.8T params

● More than 3 months for A100x20,000

● 3.2 days for H100x100,000

2. Huge amount of Memory
● Training of GPT-3 with 175B params

● Storing params (FP16) requires >350GB

● For training, requires 8 times larger
memory = Cannot fit into a single node

Large-scale distributed training is essential.
(H100x100,000 needs 150MW=$124M/year)

model #params[B] #tokens #accelerators
&training time

https://arxiv.org/abs/2303.18223

10 © 2025 Fujitsu Limited10 © 2025 Fujitsu Limited

1. Characteristics of LLM
 (Large Language Model)

2. Technology to Accelerate Training
3. Accelerating Techniques for Fugaku LLM
4. Process and Achievements of Fugaku LLM
5. Summary

11 © 2025 Fujitsu Limited

Three types of Distributed Training

Data Parallel Tensor Parallel Pipeline Parallel

Node#1

T
ra

n
s
.

E
m

b
.

T
ra

n
s
.

O
u
tdata1

Node#0

T
ra

n
s
.

E
m

b
.

T
ra

n
s
.

O
u
tdata0

Communications

Node#1

data

Node#0

T
ra

n
sfo

rm
e
r

E
m

b
e
d
d
in

g

T
ra

n
sfo

rm
e
r

O
u
t

Node#0 Node#1

T
ra

n
sfo

rm
e
r

E
m

b
e
d
d
in

g

T
ra

n
sfo

rm
e
r

O
u
tdata

Data Parallel Model Parallel

12 © 2025 Fujitsu Limited

Pros and Cons of the Distributed Types
Pros Cons

Data Parallel Highly Scalable

Easy to Distribute

Model processing time does
not become shorter

Large Mini-Batch Problem
(If the split data volume is too large,
the data becomes homogenized
and thus learning accuracy decreases.)

Tensor Parallel Model processing time
becomes shorter

Memory usage = 1/N
(N=# of nodes)

Frequent Communications

Communication and
computation cannot be
overlapped.

Pipeline Parallel Model processing time
becomes shorter

Memory usage = 1/N
(N=# of nodes)

Pipeline bubble

13 © 2025 Fujitsu Limited

3D Parallelism

●Combining 3 types of parallelism

● Splitting the Model → Tensor + Pipeline Parallelism

● Splitting the Dataset → Data Parallelism

●Typical Combination of Parallelism on GPU clusters
● Tensor: Keep within a node with multiple GPUs

● Pipeline: Min # of GPU which has enough memory to store the model

● Data: Make batch size as large as possible (<4M Tokens)

● Frameworks which support 3D parallelism
● Megatron-LM + PyTorch

●Megatron-LM https://github.com/NVIDIA/Megatron-LM

● PyTorch https://pytorch.org/

https://github.com/NVIDIA/Megatron-LM
https://pytorch.org/

14 © 2025 Fujitsu Limited14 © 2025 Fujitsu Limited

1. Characteristics of LLM
 (Large Language Model)

2. Technology to Accelerate Training
3. Accelerating Techniques for Fugaku LLM
4. Process and Achievements of Fugaku LLM
5. Summary

15 © 2025 Fujitsu Limited

Breakdown of GPT Computation Time

● Most of LLM computation includes Dense Matrix Multiplication.

→ 66% on A64FX (Fugaku), and 49% on A100

Rio Yokota and Shukai Nakamura,
https://hpcic-kkf.com/forum/2022/kkf_02/data/yokota_kkf2022-02_v2.pdf

16 © 2025 Fujitsu Limited

Breakdown of GPT 3D Parallelism

●90% of time is Parallel Processing
● Reducing communication time leads to

faster processing.

● For Data Parallel and Tensor Parallel
Bottleneck = All Reduce Comms.

● For Pipeline Parallel
Bottleneck = Waiting Time (Bubble)

→ Optimizations are implemented
 to reduce these bottlenecks.

Parallelization Ratio on Fugaku
to train GTP-3 13B

Data Parallel=67.2%
 Tensor Parallel = 2.0%
 Pipeline Parallel = 18.9%
Data : Tensor : Pipeline ≒ 35:1:10

17 © 2025 Fujitsu Limited

Optimizing Transformer on Fugaku

●The bottlenecks of Transformer:
● Dense Matrix Multiplications

● Network Communications (All Reduce)

Math Libraries

AI/ML Framework (PyTorch)

Parallelization (Megatron-DeepSpeed)

Transformer (GPT-x)

Porting PyTorch to Fugaku

Communication Optimizations

Bottleneck Analysis
→ Dense Matrix and Network Comms.

Software Layers

Matrix Multiplications Optimizations

18 © 2025 Fujitsu Limited

Accelerating Matrix Multiplications (1/2)

● Most of LLM consists of two types of matrix multiplications

●MLP: Large Matrices, which can be covered by BLAS

●Attention head(Batch Matrix Mul.): Multiple Small Matrix Mul.
 These cannot be efficiently covered by BLAS.

Implemented optimized BMM to accelerate attention head.

of batches

…

Implementation of Batch Matrix Multiplication for Large Language Model Training
on A64FX CPUs, Hiroki Tokura et al., COOL Chips 27

Large Matrices

Small Matrices

128128

19 © 2025 Fujitsu Limited

●A64FX has 48cores (4CMG).

●Partitioned a single matrix multiplication into multiple cores.
● If unsuitably partitioned, the waiting time to sync cores becomes huge.

● Once the LLM model is fixed, there are only several patterns of matrices.
Thus, the best splitting pattern can be determined beforehand.

Accelerating Matrix Multiplications (2/2)

CMG0

L2 cache

CMG1

L2 cache

Network on chip

HBM2 HBM2

CMG2

L2 cache

CMG3

L2 cache

HBM2 HBM2

TG 0 TG 1 TG 2 TG 3

Thread ID

0

11

12

23

24

35

36

47

Matrix

Multiplication
Thread-Group

of batches per Thread-Group

Time

The execution time

CMG

Cache

TG TG TG TG

TG TG TG TG

TG TG TG TG

CMG

Cache

TG TG

TG TG

TG TG

CMG

Cache

TG TG TG TG

CMG

Cache

TG

TG

TG

CMG

Cache

TG TG

CMG

Cache

TG

The patterns how to
divide among 12 cores.

Example of how to partitioned
to 2 cores (t=2).

Implementation of Batch Matrix Multiplication for Large Language Model Training
on A64FX CPUs, Hiroki Tokura et al., COOL Chips 27

Waiting Time
If the size of matrices is not Nx of # of cores,
load imbalance between cores occurs. Also, when
handling data that is too large for the cache,
it results in waiting time.

20 © 2025 Fujitsu Limited

● Tofu Interconnect connects Fugaku Nodes.
That is 6D Mesh-Torus network (X,Y,Z,A,B,C).

● X and A, Y and B, Z and C are used in a couple.
Even though it was partitioned,
still the torus structure is retained.

Accelerating All Reduce Comms. (1/2)

　
X-axis

A-axis

　
X-axis

A-axis

X-axis

　

The configuration is torus

 but the partition is mesh
By using X and A axis,

the mesh becomes torus

21 © 2025 Fujitsu Limited

● If collective comms. are mapped onto mesh
network, congestions will occur at the center.

● To prevent this, bidirectional torus comms.
are applied.

● In order to secure such comm. paths using
2 axis (X and A, Y and B etc.), finding such a
non-overwrapped, unicursal path is critical.

● This is achieved by using
a dedicated rank mapping algorithm.

Accelerating All Reduce Comms. (2/2)

22 © 2025 Fujitsu Limited22 © 2025 Fujitsu Limited

1. Characteristics of LLM
 (Large Language Model)

2. Technology to Accelerate Training
3. Accelerating Techniques for Fugaku LLM
4. Process and Achievements of Fugaku LLM
5. Summary

23 © 2025 Fujitsu Limited

Training LLM on Fugaku

● Fugaku-LLM with 13B parameters
● https://huggingface.co/Fugaku-LLM/Fugaku-LLM-13B

● AI Model Architecture: GPT-2

●Multiple hyperparameter patterns were publicly available.

● # of layers: 40, Hidden size: 5184, # of attention heads: 36

● Final AI Model Training Period: 4 months (From Dec. to Mar.)

● Fine Tuning began in Feb.

●# of Nodes: 13,824
 Data Parallel 288
 Pipeline Parallel 8
 Tensor Parallel 6
 288(Data) x 8(Pipeline) x 6(Tensor) = 13,824 Nodes

https://huggingface.co/Fugaku-LLM/Fugaku-LLM-13B

24 © 2025 Fujitsu Limited

● When training with tensor parallelism, the loss worsens
as the training steps progress.
● At the beginning, both tensor’s and pipeline’s loss decrease.

● Tensor’s begins to increase the loss halfway through.

T
ra

in
in

g

L
o
ss

Training Steps

Tensor Parallel

Pipeline Parallel

Bug Found#1:
 Deterioration of LOSS in Tensor Parallel (1/2)

25 © 2025 Fujitsu Limited

Transformer
block

Bug Found#1:
 Deterioration of LOSS in Tensor Parallel (2/2)
● Cause: Random Num Generator’s State Management among Nodes

● Some dropout layers are processed redundantly in tensor Parallel.

These redundant parts require the same random number sequence.

Word emb.
Pos emb.
Dropout

A
ttn

.

A
ttn

.

Linear

Linear

Linear

Linear

Dropout

Dropout

Transformer
block

Word emb.
Pos emb.
Dropout

A
ttn

.

A
ttn

.

Linear

Linear

Linear

Linear

Dropout

Dropout

Data
Parallel

Transformer
block

Pos.

Drop.

Linear
Linear

Linear

Linear

Drop.

Drop.

Word emb.

Pos.

Drop.

Drop.

Drop.

Linear

Linear

Linear
Linear

Require
the same rand

A
ttn

.

A
ttn

.

Require
the same rand

Pipeline
Parallel

Tensor
Parallel

Word emb.

26 © 2025 Fujitsu Limited

Bug Found#2: NaN occurs Frequently

●As training steps go, NaN frequently appears in loss.

●Cause: Overflows in activation Function
● No inf guard was implemented in the optimization codes.

How to debug these?
● Dumping data and states in the model

● Checking for equivalent points in multiple nodes

● Narrowing down using binary search
Training Steps

NaN occurs in FWD,
steps proceed

without learning.

T
ra

in
in

g
 L

o
ss

L
e
a
rn

in
g
 R

a
te

27 © 2025 Fujitsu Limited

Pre-training of LLM on Fugaku

● To prevent training from stopping, researchers must stay online.
(From Dec. to Jan.)

● Even if one node goes down, training restarts from the checkpoint.

 Arranging a 24-hour shift, and once stops, researchers restart the process.

● Why do we monitor?
● Depending on the

state of Fugaku and LLM,
prompt responses are necessary.

● Tuning Hyperparameters

● Responding to crashed nodes

● Adjusting # of nodes and rank mapping

28 © 2025 Fujitsu Limited

Ported the DL framework Megatron-DeepSpeed to Fugaku and
Accelerated the small matrix multiplications (BMM) 6x faster (110sec → 18sec),
due to the successful partitioning of the matrices on multiple cores.

Accelerated communication performance 3x faster
by using bidirectional torus communications.

Optimization Results:
x6 Computation Speed and x3 Comm. Speed

3x Faster

w/ Optimized Comm.
w/ Optimized Comm. using uTofu
w/o Optimized Comm.

CMG

Cache

TG TG TG TG

TG TG TG TG

TG TG TG TG

CMG

Cache

TG TG

TG TG

TG TG

CMG

Cache

TG TG TG TG

CMG

Cache

TG

TG

TG

CMG

Cache

TG TG

CMG

Cache

TG

29 © 2025 Fujitsu Limited

Fugaku-LLM was trained on 380 billion tokens using 13,824 nodes of Fugaku, with about
60% of the training data being Japanese, combined with English, mathematics, and code.
(2 months for pre-training, 2 months for post training）

● Fugaku-LLM is trained from scratch using our own data, so the entire learning
process can be monitored, which is superior in terms of transparency and safety.

● Fugaku-LLM is the best model among open ones that are developed in Japan.

● The model shows a score of 9.18 in the humanities and social sciences tasks.

● The model will be able to perform natural dialogue based on keigo (honorific speech)
and other features of the Japanese language.

Achievements:
LLM for the Japanese Language with 13B params

The Score of Japanese MT-Bench,
which is designed to evaluate
Japanese LLMs.
 Cyberagent (7B)
 Fugaku LLM (13B)
 GPT-4 (1.8T?)

30 © 2025 Fujitsu Limited30 © 2025 Fujitsu Limited

1. Characteristics of LLM
 (Large Language Model)

2. Technology to Accelerate Training
3. Accelerating Techniques for Fugaku LLM
4. Process and Achievements of Fugaku LLM
5. Summary

31 © 2025 Fujitsu Limited

● Characteristics of LLM
● Scaling Laws (ComputationｘDatasetｘParams)= High Accuracy

● Distributed Training for LLM
● Data Parallel, Tensor Parallel and Pipeline Parallel

Combination of these = 3D Parallelism

● Accelerating Techniques for Fugaku LLM
● Small Matrix Mul.:

Pre-analyze matrix shapes and optimally map on multiple cores → 6x faster

● All Reduce:
Bidirectional Collective Comms. → 3x faster

● Achievements of Fugaku LLM (13B Params)
● Trained in 4 months using 13,824 nodes

● Achieved a score of 9.18 in humanities category, which is higher than GPT-4

Summary

CMG

Cache

TG TG TG TG

TG TG TG TG

TG TG TG TG

CMG

Cache

TG TG

TG TG

TG TG

CMG

Cache

TG TG TG TG

CMG

Cache

TG

TG

TG

CMG

Cache

TG TG

CMG

Cache

TG

32 © 2025 Fujitsu Limited© 2025 Fujitsu Limited

If you have any questions
please get in touch:

Takahide Yoshikawa
yoshikawa.takah@fujitsu.com

Copyright

	Slide 1: Building the LLM model on the supercomputer Fugaku toward the AI for Science
	Slide 2
	Slide 3: Fugaku System
	Slide 4: Fugaku System Specification
	Slide 5: Applications of Fugaku
	Slide 6
	Slide 7: Large Language Model (LLM)
	Slide 8: Scaling Laws
	Slide 9: How much resources are required?
	Slide 10
	Slide 11: Three types of Distributed Training
	Slide 12: Pros and Cons of the Distributed Types
	Slide 13: 3D Parallelism
	Slide 14
	Slide 15: Breakdown of GPT Computation Time
	Slide 16: Breakdown of GPT 3D Parallelism
	Slide 17: Optimizing Transformer on Fugaku
	Slide 18: Accelerating Matrix Multiplications (1/2)
	Slide 19: Accelerating Matrix Multiplications (2/2)
	Slide 20: Accelerating All Reduce Comms. (1/2)
	Slide 21: Accelerating All Reduce Comms. (2/2)
	Slide 22
	Slide 23: Training LLM on Fugaku
	Slide 24
	Slide 25: Bug Found#1: Deterioration of LOSS in Tensor Parallel (2/2)
	Slide 26: Bug Found#2: NaN occurs Frequently
	Slide 27: Pre-training of LLM on Fugaku
	Slide 28: Optimization Results: x6 Computation Speed and x3 Comm. Speed
	Slide 29: Achievements: LLM for the Japanese Language with 13B params
	Slide 30
	Slide 31: Summary
	Slide 32

