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History of our Supercomputer System

Fugaku*2
World’s Fastest Prize

(Jun/Nov 2020, Jun/Nov 2021, TOP500)

K computer*2

World’s Fastest Prize
（Jun/Nov, 2011,TOP500)

Gordon Bell Prize
(2011, 2012)

*1 NWT Numerical Wind Tunnel
Co-development with NAL
*2 Co-development with RIKEN First Supercomputer

in Japan (1977)

World’s Fastest Prize
（Nov. 1993,TOP500)
Gordon Bell Prize
(1994, 1995,1996)

NWT*1

Technologies based on
inherited and accumulated 

from the past
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Fugaku System

CPU CMU BoB RackShelf System

Unit # of CPUs Description

CPU 1 Single socket node with HBM2 & Interconnect

CMU 2 CPU Memory Unit: 2x CPU

BoB 16 Bunch of Blades: 8x CMU

Shelf 48 3x BoB

Rack 384 8x Shelf (Front 4, Back 4)

System 158,976
432Racks×384CPU＝165,888≠158,976
396Racks are Full, 36Racks are Half(192CPUs)
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Fugaku System Specification

900km

Fugaku System

# of Rack 432 Racks

# of Nodes 158,976 Nodes

Total Length of Interconnect 
Cable

≧900 km

Footprint 1,920 m2

Peripherals

CTRL, Management PRIMERGY ≧140

Network Ethernet Switch 512

InfiniBand Switch 58

Megève - Madrid

1030 km

Megève - Berlin

890 km



5 © 2025 Fujitsu Limited

Applications of Fugaku

● High Performance Computing
for Science
● Computer Simulations:

Fluid Dynamics, Molecular Dynamics,
Electro Magnetic, Quantum Chemistry etc.

● AI/ML
● Accelerating 13B parameter LLM on Fugaku

● Training 400B Japanese tokens in 4 months using 
13,824 nodes

● Achieving an average score of 5.5 on the Japanese 
MT-Bench. This score is the highest among LLM for 
the Japanese language

Courtesy of RIKEN, Suzuki Motor Corp.

Courtesy of Kobe Univ, Honda R&D, RIKEN
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1. Characteristics of LLM 
 (Large Language Model)

2. Technology to Accelerate Training
3. Accelerating Techniques for Fugaku LLM
4. Process and Achievements of Fugaku LLM
5. Summary
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Large Language Model (LLM)

●AI Model for natural language processing

● Uses: Generating Text, Answering Questions, Summarizing Text, Translation etc.
● Most of recent LLMs are based on Transformer.

● Models are trained by large datasets.

● A Huge # of parameters are required.

Large Datasets

LLM Mode with
A Huge # of Params

Transformer

Translate
“I can speak French.”
into French.

Je

Transformer

Translate
“I can speak French.”
into French.
Je

peux

Transformer

Translate
“I can speak French.”
into French.
Je peux

parler

Transformer

Translate
“I can speak French.”
into French.
Je peux parler

français

Transformer

Translate
“I can speak French.”
into French.
Je peux parler français

.
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Scaling Laws

Better

● Claiming a power law relationship among
 Accuracy ∝ Computational Complexity, Amount of Data, Parameters

● Creating more accurate models = Scaling the factors (Compute, Dataset, Params)

● Various high-accurate models with a huge # of params are proposed.

● Requiring enormous amount of computing resources

https://arxiv.org/abs/2001.08361
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How much resources are required?

1. Huge amount of Computation
● Training of GPT-3 with 175B params

● 1 month for A100x8,000

● Training of GPT-4 with 1.8T params

● More than 3 months for A100x20,000

● 3.2 days for H100x100,000

2. Huge amount of Memory
● Training of GPT-3 with 175B params

● Storing params (FP16) requires >350GB

● For training, requires 8 times larger 
memory = Cannot fit into a single node

Large-scale distributed training is essential.
(H100x100,000 needs 150MW=$124M/year)

model #params[B] #tokens #accelerators
&training time

https://arxiv.org/abs/2303.18223
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Three types of Distributed Training

Data Parallel Tensor Parallel Pipeline Parallel
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Pros and Cons of the Distributed Types
Pros Cons

Data Parallel Highly Scalable

Easy to Distribute

Model processing time does 
not become shorter

Large Mini-Batch Problem
(If the split data volume is too large, 
the data becomes homogenized
and thus learning accuracy decreases.)

Tensor Parallel Model processing time 
becomes shorter

Memory usage = 1/N
(N=# of nodes)

Frequent Communications

Communication and 
computation cannot be 
overlapped. 

Pipeline Parallel Model processing time 
becomes shorter 

Memory usage = 1/N
(N=# of nodes)

Pipeline bubble
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3D Parallelism

●Combining 3 types of parallelism

● Splitting the Model → Tensor + Pipeline Parallelism

● Splitting the Dataset → Data Parallelism

●Typical Combination of Parallelism on GPU clusters
● Tensor: Keep within a node with multiple GPUs

● Pipeline: Min # of GPU which has enough memory to store the model

● Data: Make batch size as large as possible (<4M Tokens)

● Frameworks which support 3D parallelism
● Megatron-LM + PyTorch

●Megatron-LM https://github.com/NVIDIA/Megatron-LM

● PyTorch https://pytorch.org/

https://github.com/NVIDIA/Megatron-LM
https://pytorch.org/
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Breakdown of GPT Computation Time

● Most of LLM computation includes Dense Matrix Multiplication.

→ 66% on A64FX (Fugaku), and 49% on A100

Rio Yokota and Shukai Nakamura,
https://hpcic-kkf.com/forum/2022/kkf_02/data/yokota_kkf2022-02_v2.pdf
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Breakdown of GPT 3D Parallelism

●90% of time is Parallel Processing
● Reducing communication time leads to

faster processing.

● For Data Parallel and Tensor Parallel
Bottleneck = All Reduce Comms.

● For Pipeline Parallel
Bottleneck = Waiting Time (Bubble)

→ Optimizations are implemented
    to reduce these bottlenecks.

Parallelization Ratio on Fugaku
to train GTP-3 13B

Data Parallel=67.2%
  Tensor Parallel = 2.0%
  Pipeline Parallel = 18.9%
Data : Tensor : Pipeline ≒ 35:1:10
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Optimizing Transformer on Fugaku

●The bottlenecks of Transformer:
● Dense Matrix Multiplications

● Network Communications (All Reduce)

Math Libraries

AI/ML Framework (PyTorch)

Parallelization (Megatron-DeepSpeed)

Transformer (GPT-x)

Porting PyTorch to Fugaku

Communication Optimizations

Bottleneck Analysis
→ Dense Matrix and Network Comms.

Software Layers

Matrix Multiplications Optimizations
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Accelerating Matrix Multiplications (1/2)

● Most of LLM consists of two types of matrix multiplications

●MLP: Large Matrices, which can be covered by BLAS

●Attention head(Batch Matrix Mul.): Multiple Small Matrix Mul.
     These cannot be efficiently covered by BLAS. 

Implemented optimized BMM to accelerate attention head.

# of batches 

…

Implementation of Batch Matrix Multiplication for Large Language Model Training 
on A64FX CPUs, Hiroki Tokura et al., COOL Chips 27

Large Matrices

Small Matrices

128128
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●A64FX has 48cores (4CMG).

●Partitioned a single matrix multiplication into multiple cores.
● If unsuitably partitioned, the waiting time to sync cores becomes huge.

● Once the LLM model is fixed, there are only several patterns of matrices. 
Thus, the best splitting pattern can be determined beforehand.

Accelerating Matrix Multiplications (2/2)

CMG0

L2 cache

CMG1

L2 cache

Network on chip

HBM2 HBM2

CMG2

L2 cache

CMG3

L2 cache

HBM2 HBM2

TG 0 TG 1 TG 2 TG 3

Thread ID

0
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23

24
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Matrix 

Multiplication
Thread-Group

# of batches per Thread-Group

Time

The execution time

CMG

Cache
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Cache
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Cache
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Cache

TG 
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Cache
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Cache

TG 

The patterns how to 
divide among 12 cores.

Example of how to partitioned 
to 2 cores (t=2).

Implementation of Batch Matrix Multiplication for Large Language Model Training 
on A64FX CPUs, Hiroki Tokura et al., COOL Chips 27

Waiting Time
If the size of matrices is not Nx of # of cores,
load imbalance between cores occurs. Also, when 
handling data that is too large for the cache, 
it results in waiting time.
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● Tofu Interconnect connects Fugaku Nodes.
That is 6D Mesh-Torus network (X,Y,Z,A,B,C).

● X and A, Y and B, Z and C are used in a couple.
Even though it was partitioned, 
still the torus structure is retained.

Accelerating All Reduce Comms. (1/2)

　
X-axis

A-axis

　
X-axis

A-axis

X-axis

　

The configuration is torus

 but the partition is mesh
By using X and A axis,

the mesh becomes torus
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● If collective comms. are mapped onto mesh 
network, congestions will occur at the center.

● To prevent this, bidirectional torus comms. 
are applied.

● In order to secure such comm. paths using
2 axis (X and A, Y and B etc.), finding such a 
non-overwrapped, unicursal path is critical.

● This is achieved by using
a dedicated rank mapping algorithm.

Accelerating All Reduce Comms. (2/2)
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Training LLM on Fugaku

● Fugaku-LLM with 13B parameters
● https://huggingface.co/Fugaku-LLM/Fugaku-LLM-13B

● AI Model Architecture: GPT-2

●Multiple hyperparameter patterns were publicly available.

● # of layers: 40, Hidden size: 5184, # of attention heads: 36

● Final AI Model Training Period: 4 months (From Dec. to Mar.)

● Fine Tuning began in Feb.

●# of Nodes: 13,824
   Data Parallel      288
   Pipeline Parallel 8
   Tensor Parallel 6
   288(Data) x 8(Pipeline) x 6(Tensor) = 13,824 Nodes

https://huggingface.co/Fugaku-LLM/Fugaku-LLM-13B
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● When training with tensor parallelism, the loss worsens
as the training steps progress.
● At the beginning, both tensor’s and pipeline’s loss decrease.

● Tensor’s begins to increase the loss halfway through.
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Training Steps

Tensor Parallel

Pipeline Parallel

Bug Found#1: 
   Deterioration of LOSS in Tensor Parallel (1/2)
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Transformer
block

Bug Found#1: 
   Deterioration of LOSS in Tensor Parallel (2/2)
● Cause: Random Num Generator’s State Management among Nodes

● Some dropout layers are processed redundantly in tensor Parallel.

These redundant parts require the same random number sequence.
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Bug Found#2: NaN occurs Frequently

●As training steps go, NaN frequently appears in loss.

●Cause: Overflows in activation Function
● No inf guard was implemented in the optimization codes.

How to debug these?
● Dumping data and states in the model

● Checking for equivalent points in multiple nodes

● Narrowing down using binary search
Training Steps

NaN occurs in FWD, 
steps proceed

without learning.
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Pre-training of LLM on Fugaku

● To prevent training from stopping, researchers must stay online.
(From Dec. to Jan.)

● Even if one node goes down, training restarts from the checkpoint.

        Arranging a 24-hour shift, and once stops, researchers restart the process.

● Why do we monitor?
● Depending on the

state of Fugaku and LLM,
prompt responses are necessary.

● Tuning Hyperparameters

● Responding to crashed nodes

● Adjusting # of nodes and rank mapping
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Ported the DL framework Megatron-DeepSpeed to Fugaku and
Accelerated the small matrix multiplications (BMM) 6x faster (110sec → 18sec),
due to the successful partitioning of the matrices on multiple cores.

Accelerated communication performance 3x faster
by using bidirectional torus communications.

Optimization Results:
x6 Computation Speed and x3 Comm. Speed

3x Faster

w/   Optimized Comm. 
w/   Optimized Comm. using uTofu
w/o Optimized Comm.
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Fugaku-LLM was trained on 380 billion tokens using 13,824 nodes of Fugaku, with about 
60% of the training data being Japanese, combined with English, mathematics, and code. 
(2 months for pre-training, 2 months for post training）

● Fugaku-LLM is trained from scratch using our own data, so the entire learning
process can be monitored, which is superior in terms of transparency and safety.

● Fugaku-LLM is the best model among open ones that are developed in Japan.

● The model shows a score of 9.18 in the humanities and social sciences tasks.

● The model will be able to perform natural dialogue based on keigo (honorific speech) 
and other features of the Japanese language.

Achievements: 
LLM for the Japanese Language with 13B params

The Score of Japanese MT-Bench,
which is designed to evaluate 
Japanese LLMs.
            Cyberagent (7B)
            Fugaku LLM (13B)
            GPT-4 (1.8T?)
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● Characteristics of LLM
● Scaling Laws (ComputationｘDatasetｘParams)= High Accuracy

● Distributed Training for LLM
● Data Parallel, Tensor Parallel and Pipeline Parallel

Combination of these = 3D Parallelism

● Accelerating Techniques for Fugaku LLM
● Small Matrix Mul.: 

Pre-analyze matrix shapes and optimally map on multiple cores → 6x faster 

● All Reduce: 
Bidirectional Collective Comms. → 3x faster

● Achievements of Fugaku LLM (13B Params)
● Trained in 4 months using 13,824 nodes

● Achieved a score of 9.18 in humanities category, which is higher than GPT-4

Summary
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If you have any questions
please get in touch:

Takahide Yoshikawa
yoshikawa.takah@fujitsu.com

Copyright
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