
Ikeda Laboratory

Edge-AI Accelerator in 2-nm Technology

June 20th 2025

Fumio Arakawa
d.lab, The University of Tokyo

Ikeda Laboratory1

Outline

 Introduction

◆Various AI Accelerators and Our Target

 Project Overview

◆Development items: 1) AI-accelerator architecture, 2) Accelerator Chip,

3) CPU Chip, 4) Software development kit

 Background

◆Large Language Model (LLM) – Large Matrix Processing

 Our Approach

◆Data-dependent division & broadcast of load data

 Our AI Accelerator Overview

 Summary

Ikeda Laboratory

 Many Accelerators have been announced by NVIDIA, Google, Tenstorrent, etc.

 NVIDIA’s Jetson AGX Orin: 138 (275) TOPS, 60 W, 2.3 (4.6) TOPS/W, Int8 (w/ sparse accel.)

DRIVE AGX L2: 200 TOPS, 45 W, 4.4 TOPS/W, Int8

 Our PJ target is to achieve 5-times higher efficiency.

Various AI Accelerators and Our Target

source： Albert Reuther, et al., "AI and ML Accelerator Survey and Trends,” 2022 IEEE High Performance Extreme Computing (HPEC) Conference (Oct 2022)

Target

Orin AGX
(Sparse)

Ikeda Laboratory3

Project Overview

 Leading-edge Semiconductor Technology Center (LSTC)

◆ member: AIST, Rapidus, The Univ. of Tokyo

 International collaboration with Tenstorrent inc.

 Development items

① AI-accelerator architecture

◼ integrating accelerator and CPU chips

◼ HW-SW codesign

② Accelerator chip

◼ New highly-efficient Architecture

③ CPU chip

◼ conforming to RISC-V ISA

④ Software development kit

◼ conforming to de-fact-standard AI frameworks

Ikeda Laboratory4

Background

 Large Language Model (LLM), an important AI application

◆multiplication of large matrices (ex. 4,096-by-4,096) with many arithmetic units

 Transfer the data timely to registers

◆Unable to keep all large-matrix data near the arithmetic units

 Cost and Power in the advanced process (We use 2nm)

◆calculation : decreased

◆ transfer: relatively increased

 Efficient data transfer:

more and more important !!

Confidential

Ikeda Laboratory5

 Less data transfer per calculation Many AI accelerators have matrix units

◆vs. Scalar/Vector Processing

◆Difference is particularly noticeable in large matrices.

 Data transfer (vs. scalar processing)

◆65/128 1) ≅ 1/2 for 64-parallel vector processing

◆1/64 2) for 64-by-64 matrix processing

1) X*Y calculates MN sums of k products, ie. MNk calculations.

Scalar: 2-operand transfer/calculation, ie. 2MNk transfers

n-parallel vector: (1+n)-operand transfer/(n calculations), ie. (1+1/n) MNk transfers

For n=64: (1+1/64)/2 = 65/128

2) m-by-n matrix: (m+n)-operand transfer/(mn calculations), ie. (1/n+1/m) MNk transfers

For n=m=64: (1/64+1/64)/2 = 1/64

M-by-N

Matrix processing

X
M-by-k

Y
K-by-N

64-by-k

k-
b

y-
6

4

64-by-64

64-by-64
matrix

calculation

6
4

 in
p

u
t

d
a

ta

64 input data

Each data is used 64 times.

Confidential

Ikeda Laboratory6

Conventional Approach

 Hierarchical Memory Structure

◆ from high-speed small (L1) to low-speed large (Main Memory)

◆achieving both high speed and large capacity at system level.

 For power efficiency

◆ lowering supply voltage for logic parts

◆cannot lowering it for SRAM

◆Should not use L1 memory/cache

 out-of-order processing

◆memory latency can be hidden

➔ L1 memory is no longer essential.

◆ Instead, large and high-speed register files and complex control are required.

Load to r0
r3 += r1 * r0
r4 += r2 * r0
Load to r0
r3 += r1 * r0
r4 += r2 * r0

n i c w
n i c w rp

r

n i c w rp

f d
f d
f d

n i c w
n i c w rp

r

n i c w rp

f d
f d
f d

Long register lifetime for out-of-order processing

Confidential

f: fetch, d: decode, n: rename, p: dispatch,
i: issue, c: complete, w: write, r: retire

Ikeda Laboratory7

Our Approach

 Data-dependent division & multicore assignment of processing

◆Divide & Assign processing to transfer (memory load & store) & execution cores.

◆Conventionally, only data-independent division is allowed. Independent processing & Sync.

 A transfer core broadcasts memory load data to multiple execution cores.

◆Further enlarge the matrix processing

◆Broadcasting to 4 cores (Each has a 64-by-64 matrix unit) 256-by-64 matrix processing

◆Transfers: 1/100 ≅ (1/64 + 1/256)/2 = 5/512 (vs. Single core with a Scalar unit)

cf.) w/o Broadcast: No Transfer Decrease

◆Copy/Cache: to local memories, and loaded to registers Memory Footprint Increase

◆Each core fetch data directly form Shared memory Long Latency, Access Conflict

Confidential

Ikeda Laboratory8

Data-dependent division

 Significant effect of reducing data loads and memory footprint

 Order of data definition and use

◆Single core w/ Single flow: Naturally defined collapsed by Data-dependent division

 Order definition by Valid bit of each register

◆Setting/Clearing valid bit when data is written/lastly read, respectively

◆Wait write/read until register becomes invalid/valid, respectively

 This ensures correct operation of data-dependent multicore processing.

Confidential

Ikeda Laboratory9

Short Register Lifetime

 Allocate a register only while register value is necessary (write to last read).

 Overrun buffer ensure correct operation even if register allocation is failed.

 Perfect load timing control by software with hardware assistance is also ensure it.

 Hardware can identify "last read" by "valid" bit and "keep" option.

 Drastically reduce # of registers required, compared to out-of-order method.

write last read retire

Out-of-order
allocate at start
release at retire

Valid-bit
allocate at write

release at last read

Start processing e m m tf d

e e ef d w
e e ef d w

e e ef d w
e e ef d w

e m m tf d w
w

Load to r0/e0

r3 += r1/K * r0/K
r4 += r2/K * r0

Load to r0/e0

r3 += r1/K * r0/K
r4 += r2/K * r0

Transfer

Core

Execution

Core

/K：keep

/e0：to e0

Short register lifetime of valid & keep method Example pipeline flow of short register lifetime

Confidential

Ikeda Laboratory10

Compute Node Array Overview

 Compute node (CN): EC + TC + SM (Shared memory)

◆Execution Core (EC): Max 64x4x64 matrix contraction per 4 cycles

◆Transfer Core (TC): EC-sustainable data load & Broadcast

 Flow control node (FN): FCC + IM (Instruction memory)

◆Flow control core (FCC):

Load and dispatch instructions to all CNs.

 Connect 32 CNs by NoC.

CN

CN

CN

CN

CN

CN

CN

CN

CN

CN

CN

CN

CN

CN

CN

CN

CN

CN

CN

CN

CN

CN

CN

CN

CN

CN

CN

CN

CN

CN

CN

CN

FN

Confidential

Ikeda Laboratory11

Summary

 Large Language Model (LLM) Support

 Efficient data transfer is more and more important.

 64-by-64 Matrix processing per 4 cycles

◆Less data transfer per calculation 1/64

 Data-dependent division & multicore assignment of processing

◆Order definition by Valid bit of each register

 A transfer core broadcasts memory load data to multiple execution cores.

◆Significant effects of reducing data loads and memory footprint

 Short Register Lifetime Drastically reduce # of registers required

 Connect 32 Compute nodes (CNs) and a Flow control node (FN) by NoC

◆CN: Execution Core (EC) + Transfer Core (TC) + Shared memory (SM)

Confidential

Ikeda Laboratory12

Acknowledgement

 This work is based on results obtained from a project, JPNP20017*), commissioned

by the New Energy and Industrial Technology Development Organization (NEDO)

Thank you !!

*) Research and Development Project of the Enhanced infrastructures for Post-5G
Information and Communication Systems

	Slide 0: Edge-AI Accelerator in 2-nm Technology
	Slide 1: Outline
	Slide 2: Various AI Accelerators and Our Target
	Slide 3: Project Overview
	Slide 4: Background
	Slide 5: Matrix processing
	Slide 6: Conventional Approach
	Slide 7: Our Approach
	Slide 8: Data-dependent division
	Slide 9: Short Register Lifetime
	Slide 10: Compute Node Array Overview
	Slide 11: Summary
	Slide 12: Acknowledgement

