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Doing something, does not mean doing it efficiently!

O N L Y W H AT SEGNEESCRE: S 'S A ROY

. ' CHARLES M. SCHULZ
Never M|Stake IR e, AND THE ART OF PEANUTS

Activity for
Achievement

-John Wooden

stretch vp

“I choose a lazy person to do a hard job. Because a lazy person will find an easy way to do it”
— (attributed to Bill Gates, although its origin maybe much longer in time...)
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However, with the right tools, we can move the world!

- "GIVE ME A LEVER LONG
ENOUGH AND A FULCRUM
ON WHICH TO PLACE IT, AND
I SHALL MOVE THE WORLD.” -
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Vision =2 dominant source of information! A"

INTERESTING VISION FACTS:

» Two thirds of the brain electrical activity (2/3 billion firings /s)
when eyes open.
* 50% of our neural tissue directly (or indirectly) related to vision
Source: R. S. Fixot, Neuroanatomist, 1957
« More neurons dedicated to vision than all four senses combined
 Olfactory cortex losing ground to visual cortex
(i.e. vision is “eating” our smell!)
Source: John Medina, Brain Rules, 2015
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Vision is the BRAIN activity & NOT the sensorl &

K@al0OC

97 YEARS

OF COMPUTER
VISION

(AND COUNTING)

1957 — 1964 — 1976 —

The first com-
puter scanner
copies a 2-inch
photo of the in
ventor Russell
A Kirsch's son.

Defense con-
tractors Woody
Bled soe, Helen
Chan Wolf, and
Charles Bisson
Launch a facal
rnecognibhon
system for

an unnamed
ntelligence
agency

UK. police
myvwent &
bocense-plate
recognition
systerm. The
first major
nstallation s n
1993 as a “nng
of steel”™ around
London to
counteract IRA
bombings

Put enough processing power behind a digital camera
and you've got “computer vision,” the process by which
machines can analyze the visual world. Since the advent
of the transistor, systems that can do this have become
cheaper, faster, and smaller. Here's a quick overview of
the highs and lows in the technology's history.

1985 — 2004— 2008— 2010 — 2014

The first auto-
nomous Land
vehicle, made
by Lockheed
Martin, Came
gwe Mellon, and
others. uses
video-based
IMaging o
follow a road at
throe mph

Source: Popular Science, July 2014

Mars rovers
Spint and
Opportunity
Land on the Red
Flanet using
computer vis.on
to calculate
cistance and
posithon on
cescent

The first 3-D
pizza-sorting
system, the
“Scorpion”
buwilas a 3-D
profile of 7,200
products per

howur usng mul-

Uple cameras
It automati
cally culls rmas
shapen pies

Microsoft Kinect
1S redeased; ot
can track 20
human features
at 30 tmes per
second. Shortly
thereafter. a
man hacks the
device 10 track
his own mspeles
for the first
time

Phone proces-
sors become
fast enough to
handie pattern
recogmeton
Apps such as
Vhoto pick wor
thy stills from a
wvideo based on
action sequenc
es and facial
CXpressons
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Quantum
devices

| | Generality

Source: Google, Tenstorrent
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Deep Neural Networks are dominating!
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Data

Text I ‘ !

r‘J/ Images

Speech’\/% bgammg

_ Structured
< Data

-

3D Signals n

J

@loC

K

Ack: Nvidia

Foundation
Model

Tasks

) Question 7
| Answering  * .

< . Sentiment

LT . . Analysis
\ - )

9. r

%y Information v)
< Extraction b

-

Adaptation '

i\, Image
%&; Captioning %
\

3 Object
= ‘ Recognition

Instruction
IN Following .. ¥l

' y ‘\‘

J

e

&VA

NA

val

Dynamic Convolutional Neural Networks for Embedded Computer Vision



Energy and Performance-Efficient DNNs ﬂ'ﬁ

Hidden layer
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Image Source: Eyeriss@MIT
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However, we are doing a lot! L

... in fact, way more than what is necessary!
JAiming to design a model which performs good across all data!

dBenchmarking — ImageNet, CIFAR100, MNIST, etc.
A This is TOO MUCH!

| need the car to detect pedestrians.
| don’t care if it's a man or a woman!

AL
FH M
migtm
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Let’s take another examplel

~/

@10C

K

(d) 400m
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How do we (humans) do it? %

JMulti-modal sensing
= | hear a sound, | turn and focus there!
JSaliency (visual focus)
= cognitive ability to quickly differentiate from background
dShort and Long Term Spatiotemporal Memory
= Focus on current context
= Quick context switch
JMulti-Task
= Most tasks done “mechanically” — i.e. set-it-and-forget-it.
= Event-Driven Thinking!
(1Occasional Refresh

Dynamic Convolutional Neural Networks for Embedded Computer Vision



Detected
Objects

1 Step 1: motion (focus on changes)
w ] Step 2: depth (focus on object size)
9 ] Step 3: edge (focus only where’s a lot of information)
3 1 Step 4: Classify only what’s necessary!

Dynamic Convolutional Neural Networks for Embedded Computer Vision



Process only what's necessary! e

O A (very) high-speed 100m race!
‘ U Cluttered background
U Various illumination conditions
V B O 20-76% overall reduction from motion

1 1 12-30% reduction from depth

0 15-20% reduction from edge

Kyrkou, C., Theocharides, T., Bouganis, CS. et al. Embedded hardware-efficient real-time classification with cascade support vector machines. IEEE Transactions on Neural Networks
and Learning Systems, Vol 27, Issue 1, pp. 99-112.

Dynamic Convolutional Neural Networks for Embedded Computer Vision 14



Another example —Atrus (dilated) Convolution

Field Map 1 -\ Field Map 2 . Field Map 3 .

y

=)
Convolution - Convolution - Convolution

W

Kernel: 3x3; Rate:1 Kernel: 3x3; Rate:2 Kernel: 3x3; Rate:3

K@10C

C. Kyrkou and T. Theocharides, "EmergencyNet: Efficient Aerial Image Classification for Drone-Based Emergency Monitoring Using Atrous
Convolutional Feature Fusion," in IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, vol. 13, pp. 1687-1699, 2020

15
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5

VGG16 ResNet MobileNet ~ MobileNetV2 MobileNetV3  EfficientNet ~ SqueezeNet  Shufflenet Xception FireNet ~ EmergencyNet
nFPS 1147315282 2906976744 7.987220447 9.360666479 9.090909091 10.41666667 6.618133686 4.566210046 2314814815 9.854158455 24.3902439

None: 0.99990606 Fire/Smoke: 0.9947744 Fire/Smoke: 0.99996936 Flood: 0.9852625 Traffic/Road Incident:
0.99520326

C. Kyrkou and T. Theocharides, "EmergencyNet: Efficient Aerial Image Classification for Drone-Based Emergency Monitoring Using Atrous Convolutional Feature
Fusion," in IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, vol. 13, pp. 1687-1699, 2020, doi: 10.1109/JSTARS.2020.2969809.
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- Dynamic Deep Neural Networks! La

dImproved Efficiency: Computation and energy reduction by
adapting the model's depth or parameters to each input.

dFaster Inference: Early exit strategies for example allow
quick predictions for easy inputs, lowering latency.

JResource Awareness: Dynamic models can adjust
operations to handle resource constraints

JMaintained Accuracy: Often preserve accuracy by
allocating full model capacity only when needed.

K@loC
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Example: Dynamic Convolution e

atte ntion Y. Chen, et al., "Dynamic Convolution: Attention Over Convolution Kernels," in 2020 IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 2020
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Early Exit Deep Neural Networks

Stage 1 Stage 2 Stage 3 Stage 4 Stage 5 Stage 38

1 feature 10 features 20 features | 30 features 50 features 600 features

uld be a uld be a
face face

Itis a face

Could be a Could be a
face face

Throwback: Adaboost (Viola & Jones, 2001)

Could be a Co Co
face

K@10G
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Using FF training, focus on optimizing each layer! W

Layer-wise Loss Function with Channel-wise Competitive Learning
- Reformulates the goodness function to avoid negative data construction
- Enables each CNN layer to act as an independent classifier
Channel-wise Feature Separator and Extractor (CFSE) Block
* Incorporates channel-wise grouped convolutional layers

« Partitions feature space

- Facilitates learning of compositional features via standard non-separable
convolutional layers

A. Papachristodoulou, C. Kyrkou, S. Timotheou & T. Theocharides, “Convolutional Channel-Wise Competitive
Learning for the Forward-Forward Algorithm”, Proceedings of the AAAI Conference on Atrtificial Intelligence, 2024

Dynamic Convolutional Neural Networks for Embedded Computer Vision
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U=
Model Architecture L

CFSE BlOCk Group - Conv Layer

Conv Layer

GA Pred

Image

RelLU
RelLU

MaxPooling
BatchNorm
GroupConv
MaxPooling

‘ BatchNorm ‘

----- 3 A Flatten
(Lo Lowe Joe—f [ _l

Softmax

( eown T (g g, Gn) O\ | Pred
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Benefits of layer-wise learning -

Progressive Training
Progressive Training

0 2 4 6 8_10 12 14 16 18 20 22 24
Training Epoch

Inter-Leaved Layer (ILT) Training Scheduled Training

0 2 4 6 8 10.12 14 16 18 20 22 24
raining Epoch

K@l0C
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Allows for Promising Performance w/ Early Exits! ’d

Input  Groupe Output

Channels _'nput Channels
Channels

. .‘ =
. B |

Performance

MAC Energy Latency /
Accuracy : Consumption /
Operations S Sample

| End-to-End  [EEEIRIUA 100% 100% 100%
| Deep Exit  [EECIIEEEZ 92.08% 77.28% 80.45%
| Shallow Exit | 85 13% 76 54% 62.40% 65.50%

:H H"f S el =

4
/ 1
Shallow EX|t

Flatte
Shallc
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Fiatten

_ FC |
Deep

Exit

y%

Deep Exit
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Case-Study: UAV Object Detection

1
1408
1280 61,19
1088 45,42
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256 | 2,92
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1280
1088
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% 640 13,98
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(d) 400m

~/
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Experimenting with various Deep CNNs
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Context-Aware Dynamic Convolution Selector

Input CNN Parameter Pool

__________________________________

Dynamic
Reconfiguration

BT A
¥ b @ ‘
. iy
L) - L
iz Inference w/ Selected Parameters
v » o]

Model Configuration

Accuracy (mAP@.5)

CPU Usage (%)

Memory Usage (MB) Power Usage (W) Latency (ms)

O

= Static 91.9 64.23 507.99 1.02 976.1
< High Altitudes 92.6 52.68 429.36 0.75 805.6
v/ Low Altitudes 93.5 351 350.08 0.56 373.23
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Remember - It's not the destination, it's HOW to get there. e

BUT DO NOT RUSH THE JOURNEY -
BETTER IT LASTS FOR MANY LONG YEARS,
SO THAT YOU MAY ANCHOR AT THE ISLAND
WHEN YOU HAVE GROWN OLD, WEALTHY
WITH ALL YOU HAVE GAINED ON THE WAY,
NOT EXPECTING ITHAKA TO MAKE YOU RICH.

C. P. CAVAFY
- GREEK POET (1863 - 1938) -

- ,",.
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