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Doing something, does not mean doing it efficiently!

“I choose a lazy person to do a hard job. Because a lazy person will find an easy way to do it” 
– (attributed to Bill Gates, although its origin maybe much longer in time…)
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However, with the right tools, we can move the world!
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Vision à dominant source of information!

INTERESTING VISION FACTS:
• Two thirds of the brain electrical activity (2/3 billion firings /s) 

when eyes open.
• 50% of our neural tissue directly (or indirectly) related to vision

 Source: R. S. Fixot, Neuroanatomist, 1957
• More neurons dedicated to vision than all four senses combined
• Olfactory cortex losing ground to visual cortex 

(i.e. vision is “eating” our smell!)
 Source: John Medina, Brain Rules, 2015
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Vision is the BRAIN activity & NOT the sensor!

Source: Popular Science, July 2014
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Architectures For the “Brain” computation…

Source: Google, Tenstorrent
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Deep Neural Networks are dominating!

Source: Open Data Science
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Dataà Model à Adaptation

Ack: Nvidia
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Energy and Performance-Efficient DNNs
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Image Source: Eyeriss@MIT

qSoftware & EDA
qStructured Pruning
qUnstructured Pruning
qWeight sharing
qQuantization

qHardware Design
qFixed point representation
qLimited fixed point precision
qSystolic array based designs
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However, we are doing a lot! 

qAiming to design a model which performs good across all data!
qBenchmarking  – ImageNet, CIFAR100, MNIST, etc.
qThis is TOO MUCH!

I need the car to detect pedestrians.
I don’t care if it’s a man or a woman!

… in fact, way more than what is necessary!
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Let’s take another example!
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How do we (humans) do it?

qMulti-modal sensing
§ I hear a sound, I turn and focus there!

qSaliency (visual focus)
§ cognitive ability to quickly differentiate from background

qShort and Long Term Spatiotemporal Memory
§ Focus on current context
§ Quick context switch

qMulti-Task
§ Most tasks done “mechanically” – i.e. set-it-and-forget-it.
§ Event-Driven Thinking!

qOccasional Refresh
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Don’t search everywhere! - Visual Information Extraction Cascade

q Step 1: motion (focus on changes)
q Step 2: depth (focus on object size)
q Step 3: edge (focus only where’s a lot of information)
q Step 4: Classify only what’s necessary!
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Process only what’s necessary!
q A (very) high-speed 100m race!

q Cluttered background

q Various illumination conditions

q 20-76% overall reduction from motion

q 12-30% reduction from depth

q 15-20% reduction from edge

q ~1% of useful data reach the classifier
Kyrkou, C., Theocharides, T., Bouganis, CS. et al. Embedded hardware-efficient real-time classification with cascade support vector machines. IEEE Transactions on Neural Networks 
and Learning Systems, Vol 27, Issue 1, pp. 99-112.
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Another example –Atrus (dilated) Convolution

C. Kyrkou and T. Theocharides, "EmergencyNet: Efficient Aerial Image Classification for Drone-Based Emergency Monitoring Using Atrous 
Convolutional Feature Fusion," in IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, vol. 13, pp. 1687-1699, 2020
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Encouraging results!

C. Kyrkou and T. Theocharides, "EmergencyNet: Efficient Aerial Image Classification for Drone-Based Emergency Monitoring Using Atrous Convolutional Feature 
Fusion," in IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, vol. 13, pp. 1687-1699, 2020, doi: 10.1109/JSTARS.2020.2969809.
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à Dynamic Deep Neural Networks!

qImproved Efficiency: Computation and energy reduction by 
adapting the model's depth or parameters to each input.

qFaster Inference: Early exit strategies for example allow 
quick predictions for easy inputs, lowering latency.

qResource Awareness: Dynamic models can adjust 
operations to handle resource constraints

qMaintained Accuracy: Often preserve accuracy by 
allocating full model capacity only when needed.
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Example: Dynamic Convolution
qDynamic Deep Neural Networks

§ Decision “optimally” taken dynamically based on input

Chen, Zhourong, et al. "You look twice: Gaternet for dynamic filter selection in cnns." Proceedings of the IEEE/CVF Conference on Computer 
Vision and Pattern Recognition. 2019.

You Look Twice: GaterNet for 
Dynamic Filter Selection in CNNs

Dynamic Selection of some 
Convolution Parameters

Y. Chen, et al., "Dynamic Convolution: Attention Over Convolution Kernels," in 2020 IEEE/CVF 
Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 2020
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Early Exit Deep Neural Networks

Throwback: Adaboost (Viola & Jones, 2001)



Dynamic Convolutional Neural Networks for Embedded Computer Vision 20

Using FF training, focus on optimizing each layer!

Layer-wise Loss Function with Channel-wise Competitive Learning

• Reformulates the goodness function to avoid negative data construction

• Enables each CNN layer to act as an independent classifier

Channel-wise Feature Separator and Extractor (CFSE) Block

• Incorporates channel-wise grouped convolutional layers 

• Partitions feature space

• Facilitates learning of compositional features via standard non-separable 
convolutional layers

A. Papachristodoulou, C. Kyrkou, S. Timotheou & T. Theocharides, “Convolutional Channel-Wise Competitive 
Learning for the Forward-Forward Algorithm”, Proceedings of the AAAI Conference on Artificial Intelligence, 2024

https://scholar.google.com/scholar?oi=bibs&cluster=9734715811586095444&btnI=1&hl=en
https://scholar.google.com/scholar?oi=bibs&cluster=9734715811586095444&btnI=1&hl=en
https://scholar.google.com/scholar?oi=bibs&cluster=9734715811586095444&btnI=1&hl=en
https://scholar.google.com/scholar?oi=bibs&cluster=9734715811586095444&btnI=1&hl=en
https://scholar.google.com/scholar?oi=bibs&cluster=9734715811586095444&btnI=1&hl=en
https://scholar.google.com/scholar?oi=bibs&cluster=9734715811586095444&btnI=1&hl=en
https://scholar.google.com/scholar?oi=bibs&cluster=9734715811586095444&btnI=1&hl=en
https://scholar.google.com/scholar?oi=bibs&cluster=9734715811586095444&btnI=1&hl=en
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CFSE Block
GA Pred

Flatten

Softmax 
Pred

Goodness 
Pred

Competitive Layer-Wise Learning Model Architecture
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CFSE Block
GA Pred

Flatten

Softmax 
Pred

Goodness 
Pred

Model Architecture

LCwC LCwC
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Benefits of layer-wise learning

Layer 1

Layer 2

Layer 3

0 2 4 6 8 10 12 14 16 18 20 22 24
Training Epoch

Progressive Training

Progressive Training

Inter-Leaved Layer (ILT) Training
Layer 1

Layer 2

Layer 3

0 2 4 6 8 10 12 14 16 18 20 22 24Training Epoch

Scheduled Training
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Allows for Promising Performance w/ Early Exits!

https://github.com/andreaspapac/CwComp

Performance

Model Accuracy MAC 
Operations

Energy 
Consumption / 

Sample

Latency / 
Sample

End-to-End 85.4% 100% 100% 100%
Deep Exit 85.33% 92.08% 77.28% 80.45%

Shallow Exit 85.13% 76.54% 62.40% 65.50%
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Case-Study: UAV Object Detection
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Experimenting with various Deep CNNs
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Context-Aware Dynamic Convolution Selector

Simple Threshold Mechanism

Low Altitudes
High Altitudes

Static

Reinforcement Learning?

n Frequency of Context-Switch
n Reconfiguration Overheads
n Transformer Approaches
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Remember – It’s not the destination, it’s HOW to get there.
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Thank you!
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