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Brain-inspired Hyperdimensional Computing /P;;},

~—

Image ImageNet
s . Classification 15068
Dense sensory input is mapped to -
. . . o o Lidar SemanticKitti
high-dimensional sparse representation s : 80GB
. . . . egementation
on which brain operates [Babadi, Sompolinsky 2014] Human, COVID
‘ : Microbiome,
" Genomics o
Proteomics &
High dimensional e lelatazase Metabolomics
. computing i ~150TB
sparse representation
Virtual Drug PubChem
. LIT-PCBA
Screening 410k molecules
: Clustering Proteomics
White ° .1 +1+1-1+1-1... -1 | ~15008
3 : PubMed
S . . . 44k edges
Hyperdimensional (HD) computing: Graphs TUDataset
/ « Encodes data into hypervectors Millions of Grapie
* Leverages full algebra and works on well-defined set of Recommendation [JY Vs
operations that are easy to parallelize Systems ~1TB
Retina LGN « Fast single-pass training = online learning
] e ] » Supports symbolic reasoning & explainability Federated & CIFAR100
Dense input signal  Energy-efficient & robust to noise Lifelong Learning
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HD Computing Classification:
Encoding, Training & Inference
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Theoretical Results on Hypervector Dimensionality 4

Random Projection Encoding: RN
Encoding dimension depends on desired level of sparsity 1\ 2/
To ensure a k-sparse representation which separates classes with probability 1-a - -’»'f".’.e,’,.-*—"\
I n . A :
d > k—="where 6 = 0(1 —E) when kis = 10
log 1-6 k?

ID-Level Encoding: Z —
Preserves the geometry of data up to additive distortion 0 ‘*’
To ensure separability is preserved  4n? 2(nm)? | R TR

n: dimensionality of the original data d > 62 08 a »

m: quantization levels ' T ’ ' %

O: distance between classes or centroids in low dimensionality

Effects of Noise:
For N symbols drawn from alphabet of size M with noise bound ®: @ny = O(wN log M)

A.Thomas, S. Dasgupta, T. Rosing, “A Theoretical Perspective on Hyperdimensional Computing,” JAIR’21.



Kernel methods and Non-Linear Encoding for HDC R
PRISM

Random Fourier Features

e Commonly referred as “non-linear” encoding in HDC

o Capable of modeling shift-invariant kernels in HDC
(e.g. the Gaussian kernel, polynomial kernel)

Why Nystrom method ?

o« Random Fourier Features only work with
shift-invariant kernels on a Euclidean space,

Input Space Feature Space
which many useful kernels do not satisfy
e Inner-products in HD space should be reflective (e.g kernels on graphs and strings)
of some salient notion of similarity on ambient _ _
space. Contribution: NysHD

e Idea: Construct HD encoding functions using

cuitable kernel functions. « Directly generate encodings from a desired

notion of similarity - inspired by kernel
approximation

o Applicable to a wider range of data type
Quanling Zhao, Anthony Thomas, Ari Brin, Xiaofan Yu, Tajana Rosing , . . B
o Still retains efficiency and robustness of HDC

"Bridging the Gap between Hyperdimensional Computing and Kernel
Methods via the Nystrom Method" - AAAI 2025



Bridging the Gap between Hyperdimensional Computing and //\
Kernel Methods via the Nystrom Method g

Experimental results on TUD graph datasets [ICML"20]

Contains millions of graphs with 100s of nodes, 1000s of edges, from bio, social networks & computer vision

Accuracy 0% NCI1 ENZYMES D&D BZR MUTAG COX2 NCI109 Mutagen
DGCNN [AAAI'18] 702 | 369 745 | 815 | 829 78.3 711 | 75.0
Z The best
=| | cenicLR17,Axiv 9] | 79.9 | 60.7 748 | 842 | 855 831 | 80.2 79.9 acclinD
A
GIN [ICLR’2019] 734 | 288 675 | 76.4 | 76.8 781 | 708 78.0 Second best
accuracy
GIUNet [Expert Syst’24] | 724 | 29.9 63.4 | 783 | 85.0 774 | 688 76.5
O] | GraphHD [DATE?22] 60.0 | 232 676 | 749 | 853 81.9 | 59.9 59.8
N
TI|F| our NysHD [AAAr25] | 738 | 613 762 | 820 | 855 74.6 71.8 | 752

On average 11% better accuracy than previous HDC methods & 52% faster than SOTA GCN

Quanling Zhao, Anthony Thomas, Ari Brin, Xiaofan Yu, Tajana Rosing , "Bridging the Gap between Hyperdimensional Computing and Kernel Methods via the
Nystrém Method" - AAAI Conference on Artificial Intelligence (AAAI), 2025


https://chrsmrrs.github.io/datasets/docs/datasets/

HyperRec: HD Computing Recommendation Systems at Scale 4us&

* HD Recommendation systems identify similar users & items by

using their HD characterization vectors - ﬁi‘ I
* Problem: generate HD encoding for tens of millions of symbols / Sauces e e
- - an — —— Pp e SR e e . hee
* Solution: Instead of storing codewords, we construct them “on-the-fly” " \_4 Pl S mreE L8831 R gnw2sa
by evaluating a handful of hash-functions AT e o4 | R 2 T\
» Successfully tested on 1TB of data from Amazon & Yelp /D,\\ »mﬁii Sk B

item i.

* Dataset has categorical features defined over a very large alphabet - 7
with hundreds of millions of symbols [ V]

(A) Scalability of Hash vs. Random Encoding

0.780 - Method
— 0N Encoding Dimension:
> N — 100
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Y. Guo, S. Gupta, M. Imani, Y. Kim, J. Morris, T. Rosing, "HyperRec: Efficient Recommender Systems with Hyperdimensional Computing," ASPDAC 2021 & updated results on ArXiv


https://arxiv.org/abs/2209.09868

GenieHD & RAPID Alignment ="'~ <

Jmensa PRISM
. . . . . Shotgun Sequencing :_—
« Genome ldentity Extractor using HyperDimensional Computing Reads —
« Encode DNA into hypervectors —
* Combine ~1,000 segments of the reference DNA into a hypervector Assembledn ;
* Find the existence of DNA patterns using similarity computation
Genome Sequence
* RAPID - short sequence alignment accelerated in memory
* Large PIM can fit human genome and is 1,900x faster vs. Minimap on CPU, 253x faster vs. DRAGEN FPGA
" Query Sequences (FASTQ) s Query H t
| Cc(:T chcq\ | TTC(f-AcS(;rTQ )| i Query 5 I OTS! 100,000 - DRAGEN -@-PIM (smal) -e-PIM (lj.rge)
\[AAC-T6T | [(6T6~GAG | Encoding — = 10.000
[Tce=Aa] - Engine  JERNN N o e m mar - 000 |~ o—0=
o e — 1.000 —e
' Reference Sequences (FASTA) | : : i Ty
| TCTAGATTCCC-I--TTAGGGCGGT K Reference Flgilb_ﬁglﬁ?mﬂwlﬂls—r E 0.100 —
| [ AACTGGATGC - TGGCAACCGA | | ) A I I B B CTTTYT 1 o
! 5 ; Encoding £ 0.010 ./".'
' [TTCCGTCTGA — GTCTGGTCAT | | Engine UL S T =
S HV Database 0.001
. 0 10 20 30 40 50 60
Encoding

Reads (Million)

Y. Kim, M. Imani, N. Moshiri, T. Rosing, “GenieHD: Efficient DNA Pattern Matching Accelerator Using HD Computing”, Best Paper at DATE’20
Gupta, S, T. Rosing, et al. "RAPID: A ReRAM processing in-memory architecture for DNA sequence alignment." ISLPED’19.
Xu W, Gupta S, Moshiri N, Rosing T. “RAPIDx: High-performance ReRAM Processing in-Memory Accelerator for Sequence Alignment” tbd TCAD’23



Accelerating Mass Spec Database Search in Memory & Storage

PRISM PIs: Tajana Rosing, Vikram Adve, Jason Cong, Sang-Woo Jun, Eric Pop, Mingu Kang, Philip Wong, Shimeng Yu, Suman Datta g /\i‘
Other PIs: Niema Moshiri@UCSD, Pieter Dorrestein Pharmacy@UCSD, Rob Knight, Medicine@UCSD, Sourav Dutta@UTD, Wout Bittremieux P‘Rm
JUMP 2.0 Centers: Asif Khan, SUPREME; Shimeng Yu, Suman Datta, CHIMES S
Industry: Micron, Samsung, IBM, TSMC
. Motivation:
. Proteomics and metabolomics relay on mass spectrometry as a key tool in design of precision drugs
. CPU/GPU state of the art tool, AnnSoLo [Journal Proteome Research’19] is very slow due to memory boundedness - gating development of future drugs
. Novel memory and storage devices provide a capability for in/near memory computation, but have higher bit error rates & do not have compiler support
. Goal: understand & quantify what procesisng in/near novel Theme 3 & SUPREME memories can offer to big data analysis on real applications
. Technical approach:
. Leverage resiliency of hyperdimensional computing to benefit from higher capacity along with high parallelism in and near memory/storage compute
. Automate compiling of HDC-based workloads onto multiple types of accelerators: CPU, GPU, FPGA, and PIM
. HPVM produces 15x less lines of code that runs >3x faster due to optimizations
. Grand challenge application: Open modification search for mass spectrometry based on HDC [BioOxford’23] with comparable accuracy to AnnSoLo [JPR’19]
[ ]

Smaller dataset:
[ ]

Reference: Yeast and Human HCD spectral library (1,188,168 spectra; 1GB in HDC representation); Query: iPRG2012 (17,993 spectra, each query is 8,192 bits)
° Larger dataset: 154TB from MaSSiVE database at UCSD

® Reference: 1,000,000,000 spectra (8TB in HDC), Query: 15,000 spectra (typical for a single instrument run)

Spectrum Vectors

B Soactam peax insensizies| | [[LH]]] “
2 ? peak indices . ’I [LIEHII il o Cascade Search
1 T 1 —— [T T T — (tammang Simariy \
£ ... ] . Ll le=1111 Computation)
= gL @specta Resnement R A 5 Encoded query spectrum EEscasEsh
_______ T (query HV) L
2l ok G (—— ! (query N0 {110 HPVM_HDC
|- | I \ _JQQ q B E : - i
sl lle (i IV : B 2 with narrow Compller
H—m'Z +_HVect0r.ization | eak indicesl %; TTI11—=111] i g & L; precursor m/z tolerance Optimizatiyn
(Binning) Dm]]m | B - ‘®_.$ 5 E z (TTT=11T1] - Configuration
D]]]]]]] ' || BT TTT)-" §M L
: I . o OIT=1T117 ¥
CSR metadata T L= I T T Non-binary HV : Bz 8 (T 1T~=T1111
i compression !_lID ______ y Lsign > E“c"de': mm:;‘lfbm” & wibwide  © CPU GPU FPGA DRAMPIM HDReRAM HD PCM
pectrum Vectors i (reference ) precursor m/z tolerance m
(a) Data preprocessing. (b) Encoding. (c) Hamming similarity search.

Demo A.3 9



Accelerating Mass Spec Database Search in Memory & Storage

PRISM PIs:

Other PIs:

JUMP 2.0 Centers:

Tajana Rosing, Vikram Adve, Jason Cong, Sang-Woo Jun, Eric Pop, Mingu Kang, Philip Wong, Shimeng Yu, Suman Datta

Niema Moshiri@UCSD, Pleter Dorrestein Pharmacy@UCSD Rob Knight, Medicine@UCSD, Sourav Dutta@UTD Wout Blttremleux@
Asif Khan, SUPREME; Shimeng Yu, Suman Datta, CHIMES

Industry: Micron, Samsung, IBM, TSMC
RRAM chip 3 nm AlO;

Large Data GPU (not HDC) GPU FPGA DRAM MLC ReRAM MLC ReRAM MLC PCM 3D NAND ' 3D FeNAND
Comparison [JPR’19] [Bio’23] [BioSys24] [TCAD’24] [DAC’24] [DAC’24] [JXCDC’24] [MEMSYS’23] [submitted]
Algorithm ANN-SolLo HOMS-TC RapidOMS HyperOMS HyperOMS HyperOMS HyperOMS HyperOMS HyperOMS
Technology H100 w 8TB SSD H100 VP1902 with 22nm DDR4 NAND: 14nm FeNAND:14nm
Node(nm) (5nm) (5nm) 1TB SSD (7nm) 28nm Compute AL R R Bl e ASIC: 7nm FinFET ASIC: 7nm FinFET
Speed of search 1x 24x 97x 149x 259x 823x 5,303x 175x 3,779x
Energy Efficiency 1x 34x 272x 955x 48,462x 726,941x 817,808x 65,424x 261,698x

Measured Demo'23 Demo’23 Poster'23 Demo’23 Demo’24 Poster'23 Poster24 '\/_'easlweg &

simulate

* Key assumptions:
° Compiler-driven mapping
® All designs have the reference database in NVM (SSD or PIM). All accelerators have the same capacity and area at the same technology node.
® We assumed maximum 1.67 Tb per package, with 64 bit interface per package. Query is broadcast to PIM on 200 MHz bus with sequential result readout for index & score.
® Accelerators are characterized at the device level via measurement, architecture & circuits are simulated; both periphery and memory are accounted for. Results match SOTA accuracy.
* Key takeaways:
° Processing in/near memory/storage results are up to 221x faster vs GPUs with big data due to decrease in the need for data movement
¢ 800 GPUs would be needed to be able to fully fit the reference dataset in GPU memory for SOTA [JPR’19], and 100 GPUs for HDC version [Bio’23]
MLC PCM & ReRAM again have the largest improvement in energy efficiency; challenge is scaling and accuracy for more error sensitive workloads;
® ReRAM used decimals with 64 parallel banks, while PCM used binary with data packing (3x faster) and 128 banks (2x faster) = speed and efficiency are comparable
3D FeNAND offers impressive scalability and significantly higher speed and energy efficiency due to packing more strings in parallel, and not having as long strings as 3D NAND

° Both suffer from having to read data out sequentially as compared to PCM/ReRAM & would not do as well on applications with many writes

Demo A.3 10



Accelerated Drug Library Screening with HDBind [JSR’24] //\
PRISM

« Modern drug screening pipelines combine physical simulation, domain expertise, and machine learning

« HDBInd presents molecular encoding methods that can be combined with hardware efficient HDC inference
*  Previous work only considers SMILES string representation, HDBind considers instead the molecular graph information and its
combination with SOA LLM-based features

« HDBInd is 200x faster on FPGA than SOTA on GPU, has better scaling & excellent accuracy when running on
PubChem BioAssay LIT-PCBA dataset which has 410k characterized molecules

ER-1.0

100 1 HDB-RPFP
[ HDB-DECFP
B HDB-MolCLR
I HDB-MoLFormer
H HDB-Combo
80— GRIM (1)
—-—- Pafnucy (1)
-+ MLP (1) = . %
-- Logistic Reg. (L2) (p)

60 " ° o

—— HDB-Combo (GPU) /
—-= HDB-Combo (FPGA) / . FPGA-based
3 —— HDB-MoLFormer (GPU) / X
£ —-~ HDB-MoLFormer (FPGA) / / inference enables
40 9 - MLP-arge (GPU) / / - .
E | = wpsmaicry) / efficient scaling to
HDB-DECFP (GPU) /
HDB-DECFP (FPGA) '._I / repeated
7/ // screening across
20 o 4
P / the range of
i g / HDBind encoding
£ V2 %
k- i methods
0 Om mm mm mm =m =m Om mm = mm - omm= S=—e

1000 10000 20000 50000 100000 200000 500000 1000000
HDC Dimension D

HDBind models compare favorably to SOA physics-based scoring (GRIM), deep learning (Pafnucy), and o)
traditional ML methods (MLP & Logistic Regression) using the ROC-enrichment factor metric on the LIT-

PCBA dataset of 15 protein targets with experimentally verified activities Jones, D., Rosing, T., et. al. (2024). HDBind: encoding of molecular structure with

Hyperdimensional binary representations. Scientific Reports 2024


https://pubs.acs.org/doi/10.1021/acs.jcim.0c00155

HDC, LLMs & Multimodal Systems e
Collaboration with Intel, IBM, TSMC, GlobalFoundries & JUMP 2.0 Centers pmism

SensorChat combines LLMs with multimodal learning
systems to enable natural language interface to sensors at

revutncor | " | ey trained with HDC classifier with the goal of YV u :
8 — | o | | implementing on sensor training. LiDAR &
| Radar Physical World Virtual World
“loves - M B Our system
et " - Question: “What are the
e il visible large objects?" -
e S LLM-based Question
H H _F ags
e Moo, iy 1M E SEriES o Decomposition
I“m‘w‘ Lo sensor ata uttlmndal sensor data *
JJ\HL—.-U&L-—-&‘J——-J-L )
........ — —~ Sensor Data
lser o
4 g } B IE
RGB & g
e SNN-HDC, HDnn, SNN-ANN Hybrid DVS U romeer e
glaf el Networks performed using TransPIM in © < Assembly
- memory accelerator to enable fast Answer: "We detect 5 vehicles.
recognition
ANN Block P )
- : _
e - TinyAgent for edge LLMs uses layer dropping ———

o @ mewnsas | | AN poOSt-training quantization in an activation-
wwagens | | gware way resulting in smaller memory footprint
L fass > and faster execution [ICML"24]




HDnn: Large Image Classification
Jointly with TSMC, IBM and Intel

- Combine HD with a feature extractor derived from the CNN
* Prune and cut many of CNN layers; add HD as the last layer

Accuracy comparison of HD, CNN, and HDnn.

Model| Dataset— MNIST

(CIFAR-10 CIFAR-100 Flowers )

HD (RP) [9] 94% 26.9% 9% 19.6%

HD (non-linear) [10] 97% 45.5% 27.7% 31.5%

StocHD [11] 98% N/A N/A N/A
r 3

Dataset Baseline VGG16 binary HDnn

22 super categories of ImageNet 72.88% 75.52%

22 vehicle subcategories of ImageNet \ 79.91% 79.91% Y,

Three chips with TSMC

* HDnn 40nm ASIC [ESSRC'24]

* Few-shot learning

« HD MLC ReRAM [DAC24]

¢ Collaboration w PRISM Philip Wong
 HDnn 40nm ReRAM [VLSI'25]

* Key innovation: analog HDC-PIM; testing in progress

HDnn runs ImageNet & CIFAR100 as
accurately as CNNs but more efficiently

ARITADTUENEER WUVE u

=l -l E

(|2 E% 2 >§ Egg:Ongmcl
{ L 0O NN
18182 8(8|I& 3l ©

‘;‘ ’, SERASIEECREL SEOTREAR : S
Eﬁ R Z s ] R e a
s = rasa l!--_l:ll'l-lrlli: S (e} o
= FEHRERE SR AR QO
= Input :
= .% HD HD Proposed Hybrid
% & Encoding » Classification Architecture
[9] M.Imani, J. Morris, et al., “Bric: Locality-based encoding for energy-efficient [11] P. Poduval, Z. Zou, H. Najafi, H. Homayoun, and M. Imani, “Stochd: Stochastic

brain-inspired hyperdimensional computing,” in 56th Annual Design Automation
Conference, pp. 1-6, 2019.

hyperdimensional system for efficient and robust learning from raw data,” in
2021 58th ACM/IEEE Design Automation Conference (DAC), pp. 1195-1200, 2021.

[10] Z Zou, Y. Kim, M. H. Najafi, and M. Imani, “Manihd: Efficient hyper-dimensional [12] K.He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition.”

learning using manifold trainable encoder,” in 2021 Design, Automation Test in

in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition

Europe Conference Exhibition (DATE), pp. 850—855, 2021. (CVPR), June 2016.



HDC Few Shot Learning [ DATE 23, ESSERC’24]
Jointly with TSMC, IBM & Intel &

Few-shot learning (FSL): classifying new data with only a few training samples
« N-way, K-shot: N new classes & K training samples for each class |
- CNN feature extractor with HDC-based classifier
Experimental Setup: v

Pre-trained HD-based Associative Memory
on ImageNet
Image

l Embeddings
CNN

» Feature
Extractor

Training

—_———————

Associative
Encoding Memory
Search
N

Hypenectors  Inference

* FSLsetting: 10-way, 5-shot
* Front-end CNN model: ResNet-18 with 512 features
* Back-end HD classifier: D=2,048; binary
Datasets: CIFAR-100 and Caltech-UCSD Birds 200
 CIFAR-100 w 100 classes, Caltech-UCSD Birds with 200 classes
Results: FSL-HD is 20x faster with comparable accuracy to SOTA; 4.9% hlgher

accuracy compared to kNN-based design for FSL tasks [T-ED’21]

BER 0 2% 6.5% 11.0% 15%
CIFAR-100 61.4% 61.2% 61.0% 59.2% 54.5%
CU-Birds 200 85.1% 84.8% 84.3% 82.6% 77.9%

Amazing resilience of HD -> accuracy stable even in very high BER regimes!

Weihong Xu, Jaeyoung Kang, and Tajana Rosing, "FSL-HD: Accelerating Few-Shot Learning using Hyperdimensional Computing.” DATE 2023.

H. Yang*, C. E. Song*, W. Xu, B. Khaleghi, U. Mallappa, M. Shah, K. Fan, M. Kang, and T. Rosing “FSL-HDnn: A 5.7 TOPS/W End-to-end Few-shot Learning
Classifier Accelerator with Feature Extraction and Hyperdimensional Computing”, IEEE European Solid-State Electronics Research Conference (ESSERC), 2024



Clo-HDnn 40nm ASIC: Continual On Device Learmng
Jointly with TSMC [VLSI 25| PRISM

g e Bypass feature extractor
( -~ Adapting to ——— HD (Confidence | ypfor easy samples ()
o | current data Classifier Check Pase!
s| /[~ \/ " ! ® (w/ Kronecker | |id,= 15 Min. dist. )
e Catastrophic Encodor) d,= 2" Min. dist. Extract features
s/ o R P — for difficult samples
v l' forgetting Difficult samples If) | dy-dy| < Th o
@lclass®/ _! previous data Pass! Weight Clustering
Etse) WCFE Feature Ex actor
» Time
(Feature extract) (WCFE
Challenge of conventlonal continual learning . W,
|
Challenges of conventional continual on device learning Clo-HDnn Processing Flow with Dual Mode

® [orgetting the previous data due to limited memory on the edge device
® Requires less energy consumption for continual learning

Proposed Clo-HDnn: Continual on device learning with HDnn without catastrophic forgetting
® Dual mode, Normal & Bypass:
® Normal mode — feature extractor + HDC (for difficult samples)
® Bypass mode — HDC only (for easy samples)
® Efficient HD Encoder (Kronecker encoder) — simple computation instead of a large projection matrix
® Progressive Search - early decision with minimal hypervector size - minimizes associative cache memory

C. E. Song*, W. Xu*, K. Fan, S. Jain, G. Hota, H. Yang, L. Liu, K. Akarvardar, M. F. Chang, C. H. Diaz, G. Cauwenberghs, T. Rosing, and M. Kang “Clo-HDnn:
A 4.66 TFLOPS/W and 3.78 TOPS/W Continual On-Device Learning Accelerator with Energy-efficient HD Computing via Progressive Search” IEEE
Symposium on VLSI Technology and Circuits 2025



Clo-HDnn ASIC: Results ,
Jointly with TSMC /Pm‘"sﬁl

co@es ici co@ese ici n ORI ETD 0 0 ¢ Chip Summary Table
«--# of OPS —e—Energy Efficiency m e --# of OPS —e—Energy Efficiency m T i i ‘ Technology ey
200 S o 100 4 3 1 Die Size 14.4 mm?
& 4 ] = a0 ";9! Test ] : Capacity (kB) SRAM: 168 (WCFE), 32 (HDC)
o 150 m » 3 3 ! Supply Voltage 0.7V-1.2V
9 c-_; 8 E mOdUle -1 | Frequency 50MHz - 250MHz
i 35 ©60 9, 1’ 1 Model CNN (WCFE) + HDC
© 100 2 ¥ 28 4| BF16 (CNN)
o 2= g 40 e =] Precision INT1-8 (HDC training)
o A% =5 ) INT8 (HDC inference)
w— 50 .. - © 10 =1 2
o .ot , 1 o * 20 3 Feature Dimension (F) 8-1024
e VSLI*23l5] Jsscr224 ) VLSI'2107] * roal1] » HDC Dimension (D) 1024-8192
0 0 g 0 * ESSERC’24 0 E Max # of Class 128
0.7 0.8 0.9 1 1.1 1.2 - 0.7 0.8 0.9 1 1.1 1.2 {10 ¢ (o I R O O ( Peak Energy Efficiency CNN %%FE)2;§4;48$2;25\?VPSM
Voltage (V) Voltage (V) 4mm
(a) WCFE (b) HDC Ourwork ) ESSERC’24 41| visr23®@ | Jssc’23 Jssc'2218 | visr21ti0
L. Technology 40nm 40nm 28nm 28nm 40nm 40nm
En ergy eff|C|en Cy and peak th I’Oug h put Of Learning Mode CLHDC FSLHDC LET Sparse BP Low-rank BP osL
. Design Digital Digital Digital + CIM Digital Digital + CIM ReRAM CIM
(a) Feature extractor, (b) HDC running CIFAR-100 Encoder Type Kroneoker | _oRP-based
Precision BF16/INT1-8 BF16/INT16 BF16 FP8/16 INTS FP32
ReRAM: 204
. . - . . On-chip Mem. (kB) SRAM: 200 SRAM: 424 | SRAM:329 | SRAM: 1280 3 ReRAM: 8
® 7.8x and 4.9x higher energy efficiency for the weight clustering T SRAM:512 :
. Area (mm?) 14.4 1.3 5.8 16.4 29.2 0.2
feature extractor (WCFE) and classifier (HDC) vs. SOTA Frequency (MHz) 50-250 100-250 20-450 75-340 200 200
. . Supply voltage (V) 0.7-1.2 0.9-1.2 0.56-1.05 0.6-1.1 1.1 -
® 88% and 94% of Iatency and energy reduction due to bypaSS|ng Scaled EE (TFLOPS/W) 4.66 2.69 — 41@ 1.1* @ResNet18
(CNN) @ResNet18 @VGG16 00 ResNet20 (2.2 TOPS/W)
Scaled EE (TOPS/W)
(Gt stiats 3.78 (HDC) y 0.78 s - . 0.12

All the energv efficiencv (EE) is scaled to 40nm technologv. * Scaled INT8 (TOPS/W) to BF16 (TFLOPS/W)

C. E. Song*, W. Xu*, K. Fan, S. Jain, G. Hota, H. Yang, L. Liu, K. Akarvardar, M. F. Chang, C. H. Diaz, G. Cauwenberghs, T. Rosing, and M. Kang “Clo-HDnn:
A 4.66 TFLOPS/W and 3.78 TOPS/W Continual On-Device Learning Accelerator with Energy-efficient HD Computing via Progressive Search” IEEE
Symposium on VLSI Technology and Circuits 2025

H. Yang*, C. E. Song*, W. Xu, B. Khaleghi, U. Mallappa, M. Shah, K. Fan, M. Kang, and T. Rosing “FSL-HDnn: A 5.7 TOPS/W End-to-end Few-shot
Learning Classifier Accelerator with Feature Extraction and Hyperdimensional Computing”, IEEE European Solid-State Electronics Research
Conference (ESSERC), 2024



DeepVariant & HDnn Acceleration pe ¢
P

« Variant calling finds changes in genomes

Original CNN

e e.g. mutations in cancer

« DeepVariant[Nature’18] uses CNNs
* Converts aligned sequences into images & then detects variants

I . @

Conv 1-1 |
| Pooling |
Conv 1-1 |
Pooling
FC1
FC2
Softmax

e
he
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[

* HDnn accelerates image classification in memory

Examples of DeepVariant Images
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HDnnN has at least 233x higher throughput vs. SOTA

A. Dutta, Gupta, S., Rosing, T et al. "HDnn-PIM: Efficient in Memory Design of Hyperdimensional Computing with Feature Extraction,” GLVLSI’22
Poplin, Ryan, et al. "A universal SNP and small-indel variant caller using deep neural networks." Nature biotechnology’18 — source of variant images



Event-based Cameras & Sensors [TCAD’23] /\X
HyperSpike: HD Computing with Spiking Neural Networks SRish

SNN
HDC

* Single layer untrained SNN extracts features

* HDC does reasoning hﬁ
* Random projection, binary quantization, Hamming distance
* Implemented using Intel Loihi & TinyHD

* 15x faster and 4.6x more energy efficient
* 58x more robust at 3.4% BER “o-HyperSpike <0-SNN-MLP -<-SNN-VAE
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T. Zhang, J Morris, HW Lui, K Stewart, B Khaleghi, A Thomas, T Marback, B Aksanli, E Neftci, T Rosing, “HyperSpikeASIC: HD Computing for More Efficient and Robust Spiking Neural Networks, TCAD’23



LiDAR Segmentation with HD Computing on >80GB data

PI Tajana Rosing, Yi Yao, Flavio Ponzina, Xiaofan Yu, Ivannia Gomez Moreno @UCSD
PI Hun Seok Kim (CogniSense), Mingyu Yang (CogniSense)

Problem & Opportunity:

- SOTA LIDAR segmentation algorithms cannot be trained online

due to multiple layers of encoder-decoder
Technical Approach:

- Random points are sampled from the point cloud, passed through
a frozen feature extractor, features are passed to HD classifier for
training to the specific dataset - online learning possible via HDC

HyperLiDAR is at least 2x faster in training than CENET [ICME 22] &
Cylinder3D [CVPR ’21], and faster than both for inference

- HyperLiDAR is the only method capable of online learning/training
HyperLiDAR achieves comparable accuracy for nuScenes (1k
sequences; 30k points per scan) & SemanitickITTI (360° view, 43k
scans, 25 classes; ~60k points per scan)

SEGMENTATION ACCURACY COMPARISON ON NUSCENES-MINI AND SEMANTICKITTI DATASETS.

o mmm mm m e e e e e e e e e m e m e e e e e e e e ——— =
I
1

HyperLiDAR Post-Deployment Training

LiDAR Voxeliza-
tion

Class Hypervectors

@E!IIIIQE"C — | ST cars

(!:l:l]] Trees

Pretrained HDC

\V

Feature Extractor Encoding (‘mPEdESUiEnS Retraining |

& ,:> I —> |Enc

o+ @_’( LEB o

Adaptive

[}
]
early exit @_@_ : @ HDC encoding
[
3 |

Dataset Model mloU | Car | Truck | Bicycle | Person | Road = Sidewalk | Building = Vegetation
CENet [10] 195 | 44.6 0.0 0.0 16.6 79.6 17.4 - 47.2

nuScenes-mini Cylindclr:iD [51] o 30.4 78.9 0.0 0.0 519 87.2 223 - 68.0
HyperLiDAR w/o early-exit (Ours) 764 | 854 | 86.2 27.0 66.7 92.1 64.3 - 85.1
HyperLiDAR w/ carly-exit (Ours) 67.3 72.6 76.4 26.5 64.1 89.4 48.3 - 85.08
CENet [10] 635 | 964 | 877 | 508 | 668 | 953 825 86.0 86.0

SemanticKITTI Cylinder3D [51] 7 56.6 94.5 583 335 59.9 93.0 783 88.0 89.0
HyperLiDAR w/o carly-exit (Ours) 57.0 85.5 63.1 36.2 38.8 84.2 66.5 84.0 82.3
HyperLiDAR w/ early-exit (Ours) 549 | 828 | 678 39.2 40.9 70.7 55.6 81.6 82.9

Baselines: https://github.com/DarthlV02/LidarSegHD, Model: https://github.com/Darthl\V02/3DLabelProp
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Y. Yi, .Gomez Moreno, X. Yu, M. Sullivan, T. Rosing, “HyperLiDAR: Label- and Energy-Efficient LIDAR Segmentation with HD Computing” submitted.
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https://github.com/DarthIV02/LidarSegHD
https://github.com/DarthIV02/3DLabelPro

MultimodalHD: Federated Learning Over Heterogeneous Sensor |
Modalities using Hyperdimensional Computing [ DATE 24] 4@%

’\ @ Gyroscope
e Multimodal learning challenges on time-series sensor data Aggrega‘e( — ’J () Accelerometer
° DNN: relies on slow Recurrent NN models

Wi / \W4 o Magnetometer
) Split-AE [loTDI'22] & FedMSplit [NeuroComp’22] \///( wﬁk

° HDC: fast, but not accurate when capturing dynamics of multimodal data
e Attentive Multimodal Attention on HDC representation @% @%
@ % [ Mlssmg ) Missing ] @ %

() Tokenizes modalites and uses attention mechanism for multimodal fusion
o % o % Missing | o —%

Multimodal
Sensing Device

° Combines the efficiency of HDC and the strengths of attention representations
Q
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LifeHD: Lifelong Intelligence Beyond the Edge using HDC [IPSN’
Jointly with Intel

Goal: Learn and adapt to changing environment after

deployment, without supervision or prior data

LifeHD has three key components:

Novelty detection, online cluster update & merging

SOTA comparison algorithms:

Unsupervised lifelong learning based on DNNs
e (CaSSLe [CVPR’22]: past knowledge distillation
e LUMP [ICLR’22]: memory replay
Neurally-inspired lightweight algorithms; fully supervised
e FlyModel [Shen’21], SDMLP [ICLR’23]: sparse coding
and associative memory
e STAM [IUCAI'21]: progressive memory architecture

Results for LifeHD vs. SOTA

74.8% better unsupervised clustering accuracy
Up to 34.3x better energy efficiency
Faster training time

CoCoSys
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X. Yu, A. Thomas, I. Gomez Moreno, L. Gutierrez, T. Rosing, “Lifelong Intellicence bevond the Edge using Hyperdimensional Computing”, IPSN’24



FHE-HD: End-to-End FHE-based ML with HD Computing

e Problem:

O  FHE is currently only done for inference [PMLR’22, Asia CCS’22] &

simple tasks [AAAI'19, NeurlPS’20]

e Approach: use HD computing for FHE:

O  Encoding: vector-matrix multiplication + nonlinear activation

Training: addition of hypervectors (HVSs)

o
O Inference: similarity check between a query and class HV
O  Retraining: subtract/add vectors based on the inference results

Training

Training Data
\—___/

|

Similarity
Comparison

Encoder

\

(=

Update | !

Inference
—
e~
Test Data
\____/
( A
Encoder
i\ _J

' classHV; ' ‘-

P Similarity
P Comparison

FHE-HD is the first end-to-end learning system
that performs ALL operations in the FHE domain

Latency
Work #Iter 1-epoch | Total training | Inference
MLP 1 [1] 5 14 days 69.9 days -
MLP 2 [2] 5 17.4 days 86.8 days -
[ FHE-HD | 5 | 29days | 15 days | 258s |
| RNN[3] | - ] - | - | 499 min |

>1,000x faster inference vs. FHE-based RNN [Asia CCS’22]

Up to 5.8x faster training vs. FHE-based MLP [NeurlPS’22,
CVPR’19] with cor;}%?‘;able accuracy

>
R 92.50% T
St
3 90.00% = baselineHDC
2 = polynomial
87.50% , approximation
85.00% bootstrapping
0 10 20 30
Iteration

Y. Nam, M. Zhou, S. Gupta, G. De Micheli, R. Cammarota, C. Wilkerson, D. Micciancio, T. Rosing, “Efficient Machine Learning on Encrypted Data using HD Computing,” ISLPED23.



Rhychee-FL: Robust and Efficient Hyperdimensional Federated Learning with FHE //\x
PRISM

Pl Tajana Rosing, Pl Priyadarshini Panda (Yale, CoCoSys), Yujin Nam (PhD, UCSD), Xiaofan Yu (PhD, UCSD), Xuan Wang (PhD, UCSD),
Minxuan Zhou (PI IIT), Yeshwanth Venkatesha (PhD, Yale, CoCoSys), Abhishek Moitra (PhD, Yale, CoCoSys), Gabrielle De Micheli (PostDoc,

UCSD), Augusto Vega (IBM)

| Daw Model Model

* Problem & Opportunity: | &
« Federated Learning (FL) faces privacy concerns from sharing locally trained ok § a@ ‘54‘03:1’3
models that may reveal sensitive data. W8e— o N
2}
- Technical Approach: Q A 9 w“//o . b 9
* Rhychee-FL integrates Fully Homomorphic Encryption (FHE) with 00 ude w8 e L8 a8 eDE?mm 8
Hyperdimensional Computing (HDC) to create a lightweight, noise-resilient FL o (e o e NE L Te e
¢ Local Local Decrypt Globals 13::1 ¢ ml Decrypt gﬁ:{a Lol C hl;lx;fitll Decrypt ?;g:a]la

framework that reduces communication and computation overhead while
preserving accuracy and privacy.

« Reduced communication size by up to 21.4x%, improved aggregation latency by up
to 20.5x%, achieved high accuracy 6x faster and 2.2x more communication-efficient
compared to CNN-based FL, through optimized parameter tuning and FHE
simulation.

« Key results and metrics vs. SoTA:

« 2.2x less data sent with 6x faster convergence at comparable accuracy vs. SOTA

CNN [ICDE’22]

0O O O O & .80 & O
S S S S S
NN Y ) W W g

# Parameters

Yujin Nam, Xiaofan Yu, Xuan Wang, Minxuan Zhou, Yeshwanth Venkatesha, Abhishek Moitra, Gabrielle De Micheli, Augusto Vega, Priyadarshini Panda and Tajana Rosing “Rhychee-FL:
Robust and Efficient Hyperdimensional Federated Learning with Homomorphic Encryption”, DATE, 2025



Unified Accelerator for Fully Homomorphic Encryption

Tajana Rosing (PI@UCSD), Chris Wilkerson (Intel), Rosario Cammarota (Intel), Sanu Mathew (Intel), Raghavan Kumar (Intel), Sachin T%e
(Intel), Minxuan Zhou (Postdoc, UCSD), Yujin Nam (PhD, UCSD), Xuan Wang (PhD, UCSD), Youhak Lee (PhD, UCSD) PRLS

 Problem & Opportunity:

« Existing FHE accelerators do not support hybrid-scheme FHE, resulting |

HBM | General Butterfly Unit
in limited support for efficient FHE computations L eamas [ ] ] Viuleacs—O—2
i Crossbar & Dispatch Unit —— —
« Technical Approach: Butterfly | - 2><l
* Unified architecture that consists of low-level primitive function units with | DDDDD[{DD
efficient interconnect for high-throughput processing of hybrid-scheme e EILA0E BICTEQUASEL
. . ‘ Registers \
FHE applications Seratchpad

Processing Element (PE)

* Novel software-hardware co-design to fully utilize the proposed

hardware without introducing costly chip overhead " | polynomial | LWE
| . o]

|- (8.0) |' frshuffleNEX) ] Fetc/Ace.[ | Scratchpad

« Key results and metrics vs. SOTA: L . Bo— i o RegFile
N Crossbar & Dispatch Unit | | Chamnels - 30 0 viddles,
.. s ... S PEs—m SN0
« 6.0x faster and 1.6x better energy-delay-area efficiency vs. FHE | | IC;BM’ [ | o e )
’ ’ Dispatch Unit (DPU
accelerators [ISCA’23, MICRO’23]. patch Enit GFD)
, . : o Architecture of the unified accelerator for FHE

« Tape out at Intel planned for ‘25, earlier version taped out in ‘24

Minxuan Zhou, Yujin Nam, Xuan Wang, Youhak Lee, Chris Wilkerson, Rahavan Kumar, Sachin Taneja, Sanu Mathew, Rosario Cammarota,
and Tajana Rosing, “UFC: A Unified Accelerator for Fully Homomorphic Encryption”, MICRO’24, SRC#383127




FHE computing with HDC in PIM [TECS’24, TETC25] /N

* Fully homomorphic encryption removes the need for decryption => all processing in encrypted domain

PRISM

* Problem: Explosion of data and operations; e.g. int turns into 20kB, int multiply takes >10M ops
* MemFHE design implements 3" generation fully homomorphic encryption in 1TB ReRAM PIM
* We compare MemFHE with TDNN-FHE (TDNN-LvIl) [NeurlPS’19] with 163-bit (152-bit) classical security that runs

on Intel Xeon E7-4850 CPU, 1TB DRAM

Encodes and fully homomorphically encrypts data
Decrypts and decodes the processed output of the FHE-server
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MemFHE DNN vs. TDNN-FHE [NeurlPS’19]
 Normal mode: 36,007x higher throughput
* Quantum-safe mode: 15,000x higher throughput

MemFHE + HDC provides another 10-30x in speed vs SOTA

Minxuan Zhou, Yujin Nam, Pranav Gangwar, Weihong Xu, Arpan Dutta, Chris Wilkerson, Rosario Cammarota, Saransh Gupta, Tajana Rosing,”
FHEmem: A processing in-memory accelerator for fully homomorphic encryption,” IEEE TETC’25
S. Gupta, T. Rosing et al “MemFHE: FHE acceleration in memory,” ACM TECS’24



Where to next? Real-Time, Lightweight,

Robust & Secure Data Analytics at Scale

e Vision: Create novel intelligent memory and storage architectures that
e Answer when, where and how to store and process which data
e Seamlessly integrate diversity of memory, storage, compute & software

e Optimize for best performance, power, area and cost tradeoffs
¢ HD Computing (HDC) is a promising solution for future systems

» Learns adaptively due to fast training & inference => secure lifelong & federated learning at scale
e Handles big data => e.g. recommendation systems, mass spectrometry, image processing, ML ;
e Inherently robust => excellent for new memory and storage devices & error-prone communication
e Efficiently combines neuro-symbolic reasoning with probabilistic learning while being explainable
HDC - i
|, content extmcton Goach Heure

classification
natural language
processing (MLF)
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