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Brain-inspired Hyperdimensional Computing

Dense input signal

High dimensional 
sparse representation

Dense sensory input is mapped to 
high-dimensional sparse representation 

on which brain operates [Babadi, Sompolinsky 2014]
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Hyperdimensional (HD) computing:

• Encodes data into hypervectors

• Leverages full algebra and works on well-defined set of 

operations that are easy to parallelize

• Fast single-pass training  online learning

• Supports symbolic reasoning & explainability

• Energy-efficient & robust to noise

Sources: DiCarlo et al "How does the brain solve visual object recognition?." Neuron’12; Kanerva, “HD Computing: An Introduction,” Cog.Comp’09
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HD Computing Classification: 
Encoding, Training & Inference
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Theoretical Results on Hypervector Dimensionality

Random Projection Encoding:

Encoding dimension depends on desired level of sparsity  

To ensure a k-sparse representation which separates classes with probability  1-α

ID-Level Encoding:

Preserves the geometry of data up to additive distortion

To ensure separability is preserved

Effects of Noise:

For N symbols drawn from alphabet of size M with noise bound w:

A.Thomas, S. Dasgupta, T. Rosing, “A Theoretical Perspective on Hyperdimensional Computing,” JAIR’21.

n: dimensionality of the original data 

m: quantization levels

δ: distance between classes or centroids in low dimensionality



Kernel methods and Non-Linear Encoding for HDC
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Random Fourier Features

● Commonly referred as “non-linear” encoding in HDC

● Capable of modeling shift-invariant kernels in HDC 

(e.g. the Gaussian kernel, polynomial kernel)

Why Nyström method ?

● Random Fourier Features only work with 

shift-invariant kernels on a Euclidean space, 

which many useful kernels do not satisfy 

(e.g kernels on graphs and strings)

Contribution: NysHD

● Directly generate encodings from a desired 

notion of similarity - inspired by  kernel 

approximation

● Applicable to a wider range of data type

● Still retains efficiency and robustness of HDC
Quanling Zhao, Anthony Thomas, Ari Brin, Xiaofan Yu, Tajana Rosing , 

"Bridging the Gap between Hyperdimensional Computing and Kernel 

Methods via the Nyström Method" - AAAI 2025



Bridging the Gap between Hyperdimensional Computing and 
Kernel Methods via the Nyström Method

Accuracy % NCI1 ENZYMES D&D BZR MUTAG COX2 NCI109 Mutagen

DGCNN [AAAI’18] 70.2 36.9 74.5 81.5 82.9 78.3 71.1 75.0

GCN [ICLR’17,Arxiv’19] 79.9 60.7 74.8 84.2 85.5 83.1 80.2 79.9

GIN [ICLR’2019] 73.4 28.8 67.5 76.4 76.8 78.1 70.8 78.0

GIUNet [Expert Syst.’24] 72.4 29.9 63.4 78.3 85.0 77.4 68.8 76.5

GraphHD [DATE’22] 60.0 23.2 67.6 74.9 85.3 81.9 59.9 59.8

Our NysHD [AAAI’25] 73.8 61.3 76.2 82.0 85.5 74.6 71.8 75.2
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On average 11% better accuracy than previous HDC methods & 52% faster than SOTA GCN

Experimental results on TUD graph datasets [ICML’20]
Contains millions of graphs with 100s of nodes, 1000s of edges,  from bio, social networks & computer vision

Quanling Zhao, Anthony Thomas, Ari Brin, Xiaofan Yu, Tajana Rosing , "Bridging the Gap between Hyperdimensional Computing and Kernel Methods via the 

Nyström Method" - AAAI Conference on Artificial Intelligence (AAAI), 2025

The best 

accuracy

Second best 

accuracy

https://chrsmrrs.github.io/datasets/docs/datasets/


HyperRec: HD Computing Recommendation Systems at Scale

• HD Recommendation systems identify similar users & items by 
using their HD characterization vectors 

• Problem: generate HD encoding for tens of millions of symbols

• Solution: Instead of storing codewords, we construct them “on-the-fly” 
by evaluating a handful of hash-functions

• Successfully tested on 1TB of data from Amazon & Yelp

• Dataset has categorical features defined over a very large alphabet 
with hundreds of millions of symbols 

Y. Guo, S. Gupta, M. Imani, Y. Kim, J. Morris, T. Rosing, "HyperRec: Efficient Recommender Systems with Hyperdimensional Computing," ASPDAC 2021 & updated results on ArXiv

Existing HD encoding methods 

run out of memory with big data!

HD Hashing encoding easily scales

Number of non-zero values 

in encodings stays constant.

Number of non-zero values in 

encodings grows with dimension.

https://arxiv.org/abs/2209.09868


GenieHD & RAPID Alignment 

• Genome Identity Extractor using HyperDimensional Computing
• Encode DNA into hypervectors

• Combine ~1,000 segments of the reference DNA into a hypervector

• Find the existence of DNA patterns using similarity computation

• RAPID – short sequence alignment accelerated in memory
• Large PIM can fit human genome and is 1,900x faster vs. Minimap on CPU, 253x faster vs. DRAGEN FPGA

Y. Kim, M. Imani, N. Moshiri, T. Rosing, “GenieHD: Efficient DNA Pattern Matching Accelerator Using HD Computing”, Best Paper at DATE’20

Gupta, S, T. Rosing, et al. "RAPID: A ReRAM processing in-memory architecture for DNA sequence alignment." ISLPED’19.

Xu W, Gupta S, Moshiri N, Rosing T. “RAPIDx: High-performance ReRAM Processing in-Memory Accelerator for Sequence Alignment” tbd TCAD’23



Accelerating Mass Spec Database Search in Memory & Storage

PRISM PIs: Tajana Rosing, Vikram Adve, Jason Cong, Sang-Woo Jun, Eric Pop, Mingu Kang, Philip Wong, Shimeng Yu, Suman Datta
Other PIs: Niema Moshiri@UCSD, Pieter Dorrestein Pharmacy@UCSD, Rob Knight, Medicine@UCSD, Sourav Dutta@UTD, Wout Bittremieux@UAntwerp
JUMP 2.0 Centers: Asif Khan, SUPREME; Shimeng Yu, Suman Datta, CHIMES
Industry: Micron, Samsung, IBM, TSMC
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• Motivation:
• Proteomics and metabolomics relay on mass spectrometry as a key tool in design of precision drugs

• CPU/GPU state of the art tool, AnnSoLo [Journal Proteome Research’19] is very slow due to memory boundedness  gating development of future drugs
• Novel memory and storage devices provide a capability for in/near memory computation, but have higher bit error rates & do not have compiler support

• Goal: understand & quantify what procesisng in/near novel Theme 3 & SUPREME memories can offer to big data analysis on real applications

• Technical approach:
• Leverage resiliency of hyperdimensional computing to benefit from higher capacity along with high parallelism in and near memory/storage compute 

• Automate compiling of HDC-based workloads onto multiple types of accelerators: CPU, GPU, FPGA, and PIM

• HPVM produces 15x less lines of code that runs  >3x faster due to optimizations

• Grand challenge application: Open modification search for mass spectrometry based on HDC [BioOxford’23] with comparable accuracy to AnnSoLo [JPR’19]
• Smaller dataset: 

• Reference: Yeast and Human HCD spectral library (1,188,168 spectra; 1GB in HDC representation);  Query: iPRG2012 (17,993 spectra, each query is 8,192 bits)

• Larger dataset:  154TB from MaSSiVE database at UCSD

• Reference: 1,000,000,000 spectra (8TB in HDC), Query: 15,000 spectra (typical for a single instrument run) 

HDC++

HPVM-HDC
Compiler

CPU GPU FPGA DRAM PIM HD ReRAM HD PCM

Optimization 
Configuration

Demo A.3



Accelerating Mass Spec Database Search in Memory & Storage
PRISM PIs: Tajana Rosing, Vikram Adve, Jason Cong, Sang-Woo Jun, Eric Pop, Mingu Kang, Philip Wong, Shimeng Yu, Suman Datta
Other PIs: Niema Moshiri@UCSD, Pieter Dorrestein Pharmacy@UCSD, Rob Knight, Medicine@UCSD, Sourav Dutta@UTD, Wout Bittremieux@UAntwerp
JUMP 2.0 Centers: Asif Khan, SUPREME; Shimeng Yu, Suman Datta, CHIMES
Industry: Micron, Samsung, IBM, TSMC
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• Key assumptions:

• Compiler-driven mapping 

• All designs have the reference database in NVM (SSD or PIM).  All accelerators have the same capacity and area at the same technology node. 

• We assumed maximum 1.67 Tb per package, with 64 bit interface per package.  Query is broadcast to PIM on 200 MHz bus with sequential result readout for index & score.

• Accelerators are characterized at the device level via measurement, architecture & circuits are simulated; both periphery and memory are accounted for.  Results match SOTA accuracy.

• Key takeaways:

• Processing in/near memory/storage results are up to 221x faster vs GPUs with big data due to decrease in the need for data movement

• 800 GPUs would be needed to be able to fully fit the reference dataset in GPU memory for SOTA [JPR’19], and 100 GPUs for HDC version [Bio’23]

• MLC PCM & ReRAM again have the largest improvement in energy efficiency; challenge is scaling and accuracy for more error sensitive workloads; 

• ReRAM used decimals with 64 parallel banks, while PCM used binary with data packing (3x faster) and 128 banks (2x faster)  speed and efficiency are comparable

• 3D FeNAND offers impressive scalability and significantly higher speed and energy efficiency due to packing more strings in parallel, and not having as long strings as 3D NAND

• Both suffer from having to read data out sequentially as compared to PCM/ReRAM & would not do as well on applications with many writes

Measured

Large Data 

Comparison

GPU (not HDC) 

[JPR’19]

GPU 

[Bio’23]

FPGA 

[BioSys24]

DRAM 

[TCAD’24]

MLC ReRAM

[DAC’24]

MLC ReRAM

[DAC’24]

MLC PCM

[JXCDC’24]

3D NAND

[MEMSYS’23]

3D FeNAND 

[submitted]

Algorithm ANN-SoLo HOMS-TC RapidOMS HyperOMS HyperOMS HyperOMS HyperOMS HyperOMS HyperOMS

Technology 

Node(nm)

H100 w 8TB SSD

(5nm)

H100

(5nm)

VP1902  with 

1TB SSD (7nm)

22nm DDR4

28nm Compute
130nm RRAM 40nm RRAM 40nm PCM

NAND: 14nm

ASIC: 7nm FinFET

FeNAND:14nm

ASIC: 7nm FinFET

Speed of search 1x 24x 97x 149x 259x 823x 5,303x 175x 3,779x

Energy Efficiency 1x 34x 272x 955x 48,462x 726,941x 817,808x 65,424x 261,698x

Demo’23 Demo’24 Poster’24Poster’23Poster’23Demo’23Demo’23 Measured & 

simulated

Demo A.3



Accelerated Drug Library Screening with HDBind [JSR’24]

• Modern drug screening pipelines combine physical simulation, domain expertise, and machine learning

• HDBind presents molecular encoding methods that can be combined with hardware efficient HDC inference
• Previous work only considers SMILES string representation, HDBind considers instead the molecular graph information and its 

combination with SOA LLM-based features

• HDBind is 200x faster on FPGA than SOTA on GPU, has better scaling & excellent accuracy when running on 

PubChem BioAssay LIT-PCBA dataset which has 410k characterized molecules

(a) ECFP algorithm output that encodes molecular graph, (b) random 
projection of a low dimension ECFP to high dimension, (c) combination of 
LLM-feature with ECFP vector with high dimension 

Jones, D., Rosing, T., et. al. (2024). HDBind: encoding of molecular structure with 
Hyperdimensional binary representations. Scientific Reports 2024

FPGA-based 
inference enables 
efficient scaling to 
repeated 
screening across 
the range of 
HDBind encoding 
methods

HDBind models compare favorably to SOA physics-based scoring (GRIM), deep learning (Pafnucy), and 
traditional ML methods (MLP & Logistic Regression) using the ROC-enrichment factor metric on the LIT-
PCBA dataset of 15 protein targets with experimentally verified activities

https://pubs.acs.org/doi/10.1021/acs.jcim.0c00155


HDC, LLMs & Multimodal Systems
Collaboration with Intel, IBM, TSMC, GlobalFoundries & JUMP 2.0 Centers
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SNN-HDC, HDnn, SNN-ANN Hybrid 

Networks performed using TransPIM in 

memory accelerator to enable fast 

recognition

SensorChat combines LLMs with multimodal learning 

systems to enable natural language interface to sensors at 

the edge.  It obtains higher accuracy vs. SOTA QA systems, 

with an low end-to-end latency vs. SOTA multimodal LLMs.

LiDAR features are extracted using 

pretrained, frozen feature extractor and 

trained with HDC classifier with the goal of 

implementing on sensor training. LiDAR &

Radar

RGB & 

DVS

Time series 

sensor data

TinyAgent for edge LLMs uses layer dropping 

and post-training quantization in an activation-

aware way resulting in smaller memory footprint 

and faster execution [ICML”24]



HDnn: Large Image Classification 
Jointly with TSMC, IBM and Intel

• Combine HD with a feature extractor derived from the CNN
• Prune and cut many of CNN layers; add HD as the last layer

• Three chips with TSMC
• HDnn 40nm ASIC [ESSRC’24]

• Few-shot learning

• HD MLC ReRAM [DAC’24]
• Collaboration w PRISM Philip Wong

• HDnn 40nm ReRAM [VLSI’25]
• Key innovation: analog HDC-PIM; testing in progress

HDnn runs ImageNet & CIFAR100 as 

accurately as CNNs but more efficiently



HDC Few Shot Learning [DATE’23, ESSERC’24]
Jointly with TSMC, IBM & Intel

• Few-shot learning (FSL): classifying new data with only a few training samples
• N-way, K-shot: N new classes & K training samples for each class
• CNN feature extractor with HDC-based classifier

• Experimental Setup:
• FSL setting: 10-way, 5-shot 
• Front-end CNN model: ResNet-18 with 512 features
• Back-end HD classifier: D=2,048;  binary

• Datasets: CIFAR-100 and Caltech-UCSD Birds 200
• CIFAR-100 w 100 classes, Caltech-UCSD Birds with 200 classes

• Results: FSL-HD is 20x faster with comparable accuracy to SOTA; 4.9% higher 
accuracy compared to kNN-based design for FSL tasks [T-ED’21]

BER 0 2% 6.5% 11.0% 15%

CIFAR-100 61.4% 61.2% 61.0% 59.2% 54.5%

CU-Birds 200 85.1% 84.8% 84.3% 82.6% 77.9%

Amazing resilience of HD ->  accuracy stable even in very high BER regimes!

Weihong Xu, Jaeyoung Kang, and Tajana Rosing, "FSL-HD: Accelerating Few-Shot Learning using Hyperdimensional Computing." DATE 2023.

H. Yang*, C. E. Song*, W. Xu, B. Khaleghi, U. Mallappa, M. Shah, K. Fan, M. Kang, and T. Rosing “FSL-HDnn: A 5.7 TOPS/W End-to-end Few-shot Learning 

Classifier Accelerator with Feature Extraction and Hyperdimensional Computing”, IEEE European Solid-State Electronics Research Conference (ESSERC), 2024



Clo-HDnn 40nm ASIC: Continual On Device Learning
Jointly with TSMC [VLSI’25]

Challenges of conventional continual on device learning 

● Forgetting the previous data due to limited memory on the edge device

● Requires less energy consumption for continual learning

Proposed Clo-HDnn:  Continual on device learning with HDnn without catastrophic forgetting

● Dual mode, Normal & Bypass:

● Normal mode → feature extractor + HDC (for difficult samples)

● Bypass mode → HDC only (for easy samples) 

● Efficient HD Encoder (Kronecker encoder) – simple computation instead of a large projection matrix

● Progressive Search - early decision with minimal hypervector size  minimizes associative cache memory

Clo-HDnn Processing Flow with Dual Mode

C. E. Song*, W. Xu*, K. Fan, S. Jain, G. Hota, H. Yang, L. Liu, K. Akarvardar, M. F. Chang, C. H. Diaz, G. Cauwenberghs, T. Rosing, and M. Kang “Clo-HDnn: 

A 4.66 TFLOPS/W and 3.78 TOPS/W Continual On-Device Learning Accelerator with Energy-efficient HD Computing via Progressive Search” IEEE 

Symposium on VLSI Technology and Circuits 2025 

Challenge of conventional continual learning



Clo-HDnn ASIC:  Results
Jointly with TSMC

● 7.8x and 4.9x higher energy efficiency for the weight clustering 

feature extractor (WCFE) and classifier (HDC) vs. SOTA

● 88% and 94% of latency and energy reduction due to bypassing

Energy efficiency and peak throughput of 

(a) Feature extractor, (b) HDC running CIFAR-100

C. E. Song*, W. Xu*, K. Fan, S. Jain, G. Hota, H. Yang, L. Liu, K. Akarvardar, M. F. Chang, C. H. Diaz, G. Cauwenberghs, T. Rosing, and M. Kang “Clo-HDnn: 

A 4.66 TFLOPS/W and 3.78 TOPS/W Continual On-Device Learning Accelerator with Energy-efficient HD Computing via Progressive Search” IEEE 

Symposium on VLSI Technology and Circuits 2025 

H. Yang*, C. E. Song*, W. Xu, B. Khaleghi, U. Mallappa, M. Shah, K. Fan, M. Kang, and T. Rosing “FSL-HDnn: A 5.7 TOPS/W End-to-end Few-shot 

Learning Classifier Accelerator with Feature Extraction and Hyperdimensional Computing”, IEEE European Solid-State Electronics Research 

Conference (ESSERC), 2024



DeepVariant & HDnn Acceleration

HDnn has at least 233x higher throughput vs. SOTA

A. Dutta, Gupta, S., Rosing, T et al. ”HDnn-PIM: Efficient in Memory Design of Hyperdimensional Computing with Feature Extraction,” GLVLSI’22
Poplin, Ryan, et al. "A universal SNP and small-indel variant caller using deep neural networks." Nature biotechnology’18 – source of variant images

• Variant calling finds changes in genomes 
• e.g. mutations in cancer

• DeepVariant[Nature’18] uses CNNs
• Converts aligned sequences into images & then detects variants
• HDnn accelerates image classification in memory

Variants  in two chromosomes

No variants

Examples of DeepVariant Images



• Single layer untrained SNN extracts features

• HDC does reasoning

• Random projection, binary quantization, Hamming distance

• Implemented using Intel Loihi & TinyHD

• 15x faster and 4.6x more energy efficient

• 58x more robust at 3.4% BER 

Event-based Cameras & Sensors [TCAD’23]
HyperSpike: HD Computing with Spiking Neural Networks

T. Zhang, J Morris, HW Lui, K Stewart, B Khaleghi, A Thomas, T Marback, B Aksanli, E Neftci, T Rosing, “HyperSpikeASIC: HD Computing for More Efficient and Robust Spiking Neural Networks, TCAD’23



LiDAR Segmentation with HD Computing on >80GB data
PI Tajana Rosing, Yi Yao, Flavio Ponzina, Xiaofan Yu, Ivannia Gomez Moreno @UCSD
PI Hun Seok Kim (CogniSense), Mingyu Yang  (CogniSense)
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• Problem & Opportunity:  

• SOTA LiDAR segmentation algorithms cannot be trained online 

due to multiple layers of encoder-decoder 

• Technical Approach:

• Random points are sampled from the point cloud, passed through 

a frozen feature extractor, features are passed to HD classifier for 

training to the specific dataset  online learning possible via HDC

• HyperLiDAR is at least 2x faster in training than CENET [ICME ‘22]  & 

Cylinder3D [CVPR ’21], and faster than both for inference

• HyperLiDAR is the only method capable of online learning/training

• HyperLiDAR achieves comparable accuracy for nuScenes (1k 

sequences; 30k points per scan) & SemaniticKITTI (360o view, 43k 

scans, 25 classes; ~60k points per scan)

Y. Yi, I.Gomez Moreno, X. Yu, M. Sullivan, T. Rosing, “HyperLiDAR: Label- and Energy-Efficient LiDAR Segmentation with HD Computing” submitted.

Baselines: https://github.com/DarthIV02/LidarSegHD, Model: https://github.com/DarthIV02/3DLabelProp

Training time in Frames/sec

Training Latency experiments on NVIDIA A10 GPU

Better

T
im

e
 (

F
P

S
)

https://github.com/DarthIV02/LidarSegHD
https://github.com/DarthIV02/3DLabelPro


MultimodalHD: Federated Learning Over Heterogeneous Sensor 
Modalities using Hyperdimensional Computing [DATE’24]

● Multimodal learning challenges on time-series sensor data
● DNN: relies on slow Recurrent NN models

● Split-AE [IoTDI’22] & FedMSplit [NeuroComp’22]

● HDC: fast, but not accurate when capturing dynamics of multimodal data

● Attentive Multimodal Attention on HDC representation
● Tokenizes modalites and uses attention mechanism for multimodal fusion

● Combines the efficiency of HDC and the strengths of attention representations

Quanling Zhao, Xiaofan Yu, Shengfan Hu, Tajana Rosing, "MultimodalHD: Federated Learning Over 

Heterogeneous Sensor Modalities using HD Computing" DATE’24

Up to 8x faster training at SOTA accuracy

Split-AE 

[IoTDI’22]

FedMSplit

[NeuroCom’22]

Activity recognition           Mobile Health            On body sensing Communication round 

for activity recognition



LifeHD: Lifelong Intelligence Beyond the Edge using HDC [IPSN’24]
Jointly with Intel

● Goal: Learn and adapt to changing environment after 

deployment, without supervision or prior data

● LifeHD has three key components:

● Novelty detection, online cluster update & merging

● SOTA comparison algorithms:
● Unsupervised lifelong learning based on DNNs

● CaSSLe [CVPR’22]: past knowledge distillation

● LUMP [ICLR’22]: memory replay

● Neurally-inspired lightweight algorithms; fully supervised

● FlyModel [Shen’21], SDMLP [ICLR’23]: sparse coding 

and associative memory

● STAM [IJCAI’21]: progressive memory architecture

● Results for LifeHD vs. SOTA
• 74.8% better unsupervised clustering accuracy 

• Up to 34.3x better energy efficiency

• Faster training time

X. Yu, A. Thomas, I. Gomez Moreno, L. Gutierrez, T. Rosing, “Lifelong Intelligence beyond the Edge using Hyperdimensional Computing”, IPSN’24



FHE-HD: End-to-End FHE-based ML with HD Computing

● Problem: 

○ FHE is currently only done for inference [PMLR’22, Asia CCS’22]  & 
simple tasks [AAAI’19, NeurIPS’20] 

● Approach: use HD computing for FHE:
○ Encoding: vector-matrix multiplication + nonlinear activation
○ Training: addition of hypervectors (HVs)
○ Inference: similarity check between a query and class HV
○ Retraining: subtract/add vectors based on the inference results

FHE-HD is the first end-to-end learning system 

that performs ALL operations in the FHE domain

HDC

FHE-HD

● >1,000x faster inference vs. FHE-based RNN [Asia CCS’22]

● Up to 5.8x faster training vs. FHE-based MLP [NeurIPS’22, 

CVPR’19] with comparable accuracy

Y. Nam, M. Zhou, S. Gupta, G. De Micheli, R. Cammarota, C. Wilkerson, D. Micciancio, T. Rosing, “Efficient Machine Learning on Encrypted Data using HD Computing,” ISLPED”23.



Rhychee-FL: Robust and Efficient Hyperdimensional Federated Learning with FHE
PI Tajana Rosing, PI Priyadarshini Panda (Yale, CoCoSys), Yujin Nam (PhD, UCSD), Xiaofan Yu (PhD, UCSD), Xuan Wang (PhD, UCSD),

Minxuan Zhou (PI IIT), Yeshwanth Venkatesha (PhD, Yale, CoCoSys), Abhishek Moitra (PhD, Yale, CoCoSys), Gabrielle De Micheli (PostDoc,

UCSD), Augusto Vega (IBM)

• Problem & Opportunity:  

• Federated Learning (FL) faces privacy concerns from sharing locally trained 

models that may reveal sensitive data.

• Technical Approach:

• Rhychee-FL integrates Fully Homomorphic Encryption (FHE) with 

Hyperdimensional Computing (HDC) to create a lightweight, noise-resilient FL 

framework that reduces communication and computation overhead while 

preserving accuracy and privacy.

• Reduced communication size by up to 21.4×, improved aggregation latency by up 

to 20.5×, achieved high accuracy 6× faster and 2.2× more communication-efficient 

compared to CNN-based FL, through optimized parameter tuning and FHE 

simulation.

• Key results and metrics vs. SoTA:

• 2.2× less data sent with 6× faster convergence at comparable accuracy vs. SOTA

CNN [ICDE’22]

Yujin Nam, Xiaofan Yu, Xuan Wang, Minxuan Zhou, Yeshwanth Venkatesha, Abhishek Moitra, Gabrielle De Micheli, Augusto Vega, Priyadarshini Panda and Tajana Rosing “Rhychee-FL:

Robust and Efficient Hyperdimensional Federated Learning with Homomorphic Encryption”, DATE, 2025



Unified Accelerator for Fully Homomorphic Encryption
Tajana Rosing (PI@UCSD), Chris Wilkerson (Intel), Rosario Cammarota (Intel), Sanu Mathew (Intel), Raghavan Kumar (Intel), Sachin Tajene
(Intel), Minxuan Zhou (Postdoc, UCSD), Yujin Nam (PhD, UCSD), Xuan Wang (PhD, UCSD), Youhak Lee (PhD, UCSD)

• Problem & Opportunity:  

• Existing FHE accelerators do not support hybrid-scheme FHE, resulting 

in limited support for efficient FHE computations

• Technical Approach:

• Unified architecture that consists of low-level primitive function units with 

efficient interconnect for high-throughput processing of hybrid-scheme 

FHE applications

• Novel software-hardware co-design to fully utilize the proposed 

hardware without introducing costly chip overhead

• Key results and metrics vs. SOTA:

• 6.0× faster and 1.6× better energy-delay-area efficiency vs. FHE 

accelerators [ISCA’23, MICRO’23].

• Tape out at Intel planned for ‘25, earlier version taped out  in ‘24

Minxuan Zhou, Yujin Nam, Xuan Wang, Youhak Lee, Chris Wilkerson, Rahavan Kumar, Sachin Taneja, Sanu Mathew, Rosario Cammarota, 

and Tajana Rosing, “UFC: A Unified Accelerator for Fully Homomorphic Encryption”, MICRO’24, SRC#383127

Architecture of the unified accelerator for FHE



FHE computing with HDC in PIM [TECS’24, TETC’25]
• Fully homomorphic encryption removes the need for decryption => all processing in encrypted domain

• Problem: Explosion of data and operations; e.g. int turns into 20kB, int multiply takes >10M ops
• MemFHE design implements 3rd generation fully homomorphic encryption in 1TB ReRAM PIM 
• We compare MemFHE with TDNN-FHE (TDNN-Lvl) [NeurIPS’19] with 163-bit (152-bit) classical security that runs 

on Intel Xeon E7-4850 CPU, 1TB DRAM

MemFHE DNN vs. TDNN-FHE [NeurIPS’19] 

• Normal mode: 36,007x higher throughput 

• Quantum-safe mode: 15,000x higher throughput

MemFHE + HDC provides another 10-30x in speed vs SOTA

Minxuan Zhou, Yujin Nam, Pranav Gangwar, Weihong Xu, Arpan Dutta, Chris Wilkerson, Rosario Cammarota, Saransh Gupta, Tajana Rosing,”

FHEmem: A processing in-memory accelerator for fully homomorphic encryption,”  IEEE TETC’25

S. Gupta, T. Rosing et al “MemFHE: FHE acceleration in memory,” ACM TECS’24
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