

Open Source in Hardware Design – Opportunities, Challenges and Example

Norbert Wehn

23ND EDITION OF THE MPSOC EVENT

JUNE 15TH-20TH, 2025 LES FERMES DE MARIE, MEGEVE, FRANCE

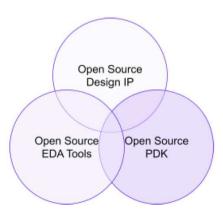
and from the operation of the second second

R

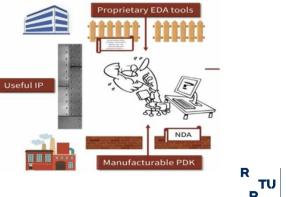
TU Rheinland-Pfälzische Technische Universität Kaiserslautern Landau

Open-Source in Hardware !?

Basic Principles if Open-Source


- Openness, Transparency, collaborative design
- Reduced cost, faster adaption, fosters innovation

Open-Source Software


- Started about 30 years ago, successful and well established
- Large community, collaborative development, e.g. Linux
- Enterprises: SW-development cost 3,5 x larger than without OSS (Harvard Business School 2024)
- Concepts/experience transferable to chip design?

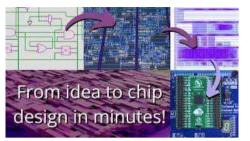
Open-Source Hardware – in the beginning

- RISC-V
- Technological Sovereignty
- Access: NDA, export regulations

IC Research "Ecosystem"

Open-Source Activities

Many Activitities


- BMBF projects DE:Sign, DE:Sign Challenge, acatech study, IHP....
- PULP platforms, OpenROAD initiative, Tiny tapeout/efabless
- EU Initiative: free and Open-Source Silicon Foundation (FOSSI): EU Roadmap

Different Views/Opinions

- EDA, beginners in design, skilled designers
- Research/Universities, StartUps/SMEs, large industry
- Technologynode: 130nm...7nm
- Type of circuit design: digital, Mixed-Signal, RF, sensor, optic, powerss., ...

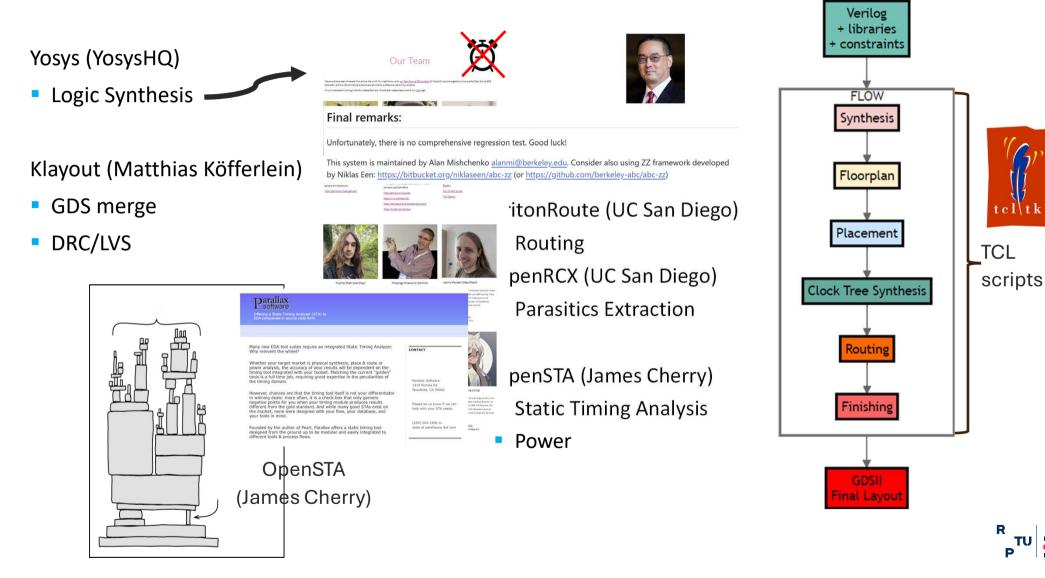
Challenges

- Maturity and PPA Quality
- Support, Business model
- Dependency on USA

ETH zürich 🍥 www.www.utumme

en source is as much wore than there of cost it gives everybody, including you, the It is a hape the future of a project. Unlike the full benefics of query source today become a contributed Participant in discussions, report fugs, date you investments, or even start a new free and goes source billion project!

Open-Source Overview


Design Activity	Synopsys	Cadence	Siemens EDA	Open-Source
High-Level Synthesis	Symphony C	Stratus HLS	Catapult	XLS (Google)
RTL-Analysis	RTL-Architect, SpyGlass, Verdi	Joules, Litmus	Questa-Visualizer	Cocotb
RTL-Simulator	VCS, VC family, Zebu	Xcelium, Verisium, Palladium	ModelSim, Veloce	Verilator/GHDL/Icarus
Logic Synthesis	Design Compiler, FusionCompiler	Genus	Oasys	Yosys
Formal Equivalent	Formality, VCFormal	Japser, Conformal	OneSpin	Yosys
Static Timing Analysis	PrimeTime	Tempus	-	OpenSTA
Place and Route	ICC/ICC2, FusionCompiler	Encounter, Innovus	Aprisa	OpenROAD
Power Analysis, EM/IR	PrimePower, Redhawk	Voltus	PowerPro, mPower	OpenROAD (OpenSTA)
Physical Verification (DRC/LVS)	IC Validator	PVS, Pegasus	Calibre •	MAGIC/Klayout
Parasitic Extraction	StarRC	Quantus	Calibre xRC/xACT	MAGIC/OpenRCX
ECO-Tools	Tweaker, PrimeTimeECO	Talus ECO	-	N/A
Analog, AMS, RF	CustomCompiler, HSPICE	Virtuoso, Spectre	Questa, Eldo, FastSPICE	Xsheme, ngspice, Xyce, OpenVAF
Library Characterization & Prediction	SiliconSmart, LibraryCompiler, NanoTime	Liberate	Solido, Kronos	N/A
Package, Co-Design	3DIC Compiler	Silicon-Package-Board Co- Design	Xpedition	N/A

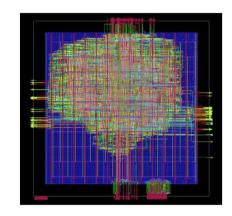
Yosys, Klayout, und ngspice are from Europe!

Source: updated table from David Thanh

Open Source – OpenRoad

ORFlow

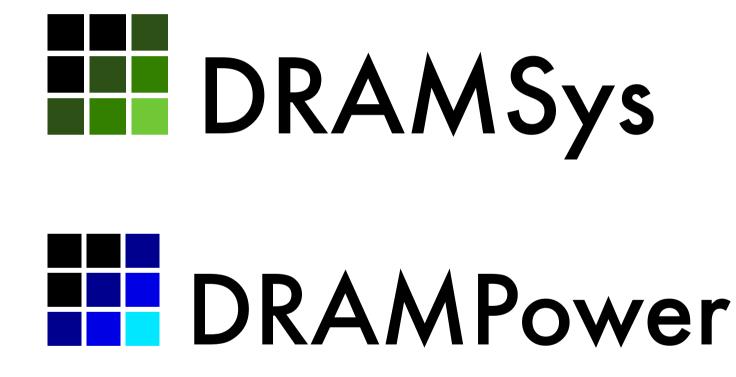
Open-Source Digital Benchmark - Example



Open-Source PicoRV32 RISC-V Core

STD-Lib from ARM, 9-Track SLVT, **12nm** GF12LPP für kommerziellen Flow und OpenROAD Flow

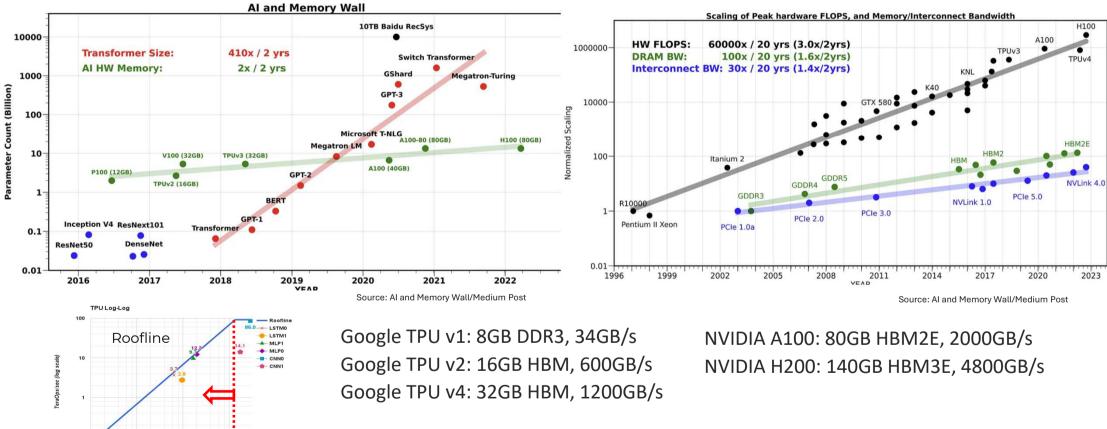
	Commercial	OpenRoad
Performance		
Clock Constrain [ps]	2000	2000
WC Delay [ps]	1935	631 (-67%)
Power		
Switching [μW]	2122	3830 (80.5%)
Internal [μW]	3459	4760 (37.6%)
Leakage [µW]	123	-66.8 (-154%)
Total [μW]	5704	8523 (49.4%)
Area		
Cell [μm^2]	2205	5688 (61.2%)
Total [μm^2]	3593	11664 (69.2%)
Run-Time		
CPU Cores Used	8 (Licences!)	96
Time [min]	130	5 (-96%)


	Commercial	OpenRoad
Performance		
Clock Constrain [ps]	650	650
WC Delay [ps]	650	646 (-0.62%)
Power		
Switching [μW]	2769	14200 (330%)
Internal [μW]	3302	9780 (196%)
Leakage [μW]	141	-66.8 (-147%)
Total [μW]	6212	23913 (285%)
Area		
Cell [μm^2]	2328	5471 (57.4%)
Total [μm^2]	4113	11664 (64.7%)
Run-Time		
CPU Cores Used	8 (Licences!)	96
Time [min]	130	5 (-96%)

- Results independent of timing constraints: no trade-off area, power and timing for relaxed timing constraints
- Leakage power estimations are wrong
- But fast run times!

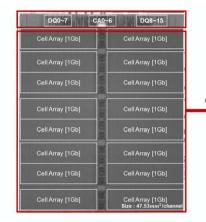
Open-Source Tools

Importance of DRAM Memories – AI Challenges

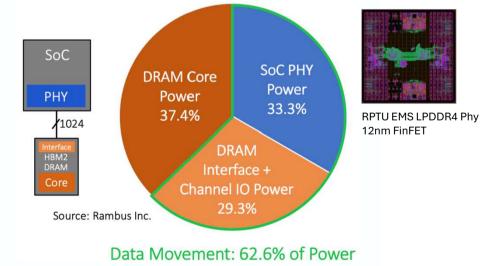

Model Size versus AI accelerator Memory Capacity

100

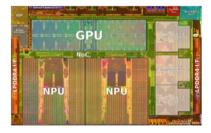
Operational Intensity: Ops/weight byte (log scale


1000

Memory Bandwidth

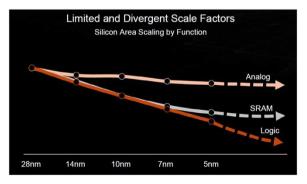


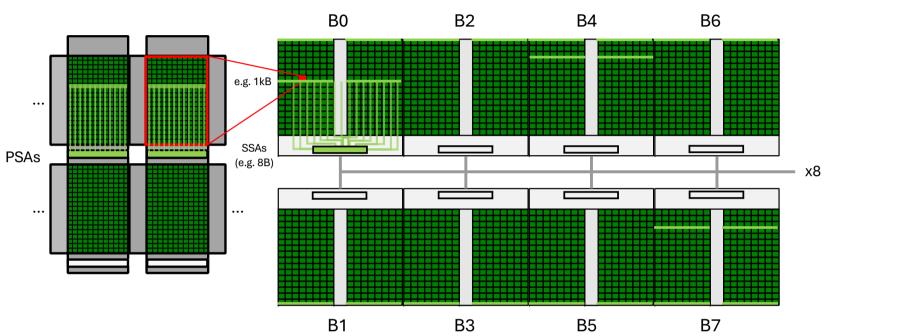

Al Memory Challenges – Energy



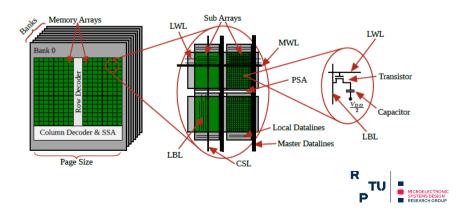
Channel

Source: A 16Gb 9.5Gb/s/pin LPDDR5X SDRAM with Low-Power Schemes Exploiting Dynamic Voltage-Frequency Scaling and Offset-Calibrated Readout Sense Amplifiers in a Fourth Generation 10nm DRAM Process, https://doi.org/10.1109/ISSCC42614.2022.9731537 Source: https://www.heise.de/news/Apple-M4_TSMCs-FinFlex-hilft-den-Performance-Rechenkernen-9766547.html





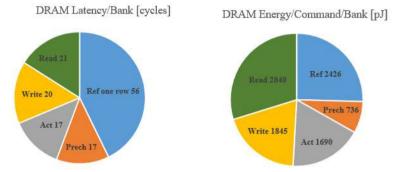
Source: Tesla /FSD 3



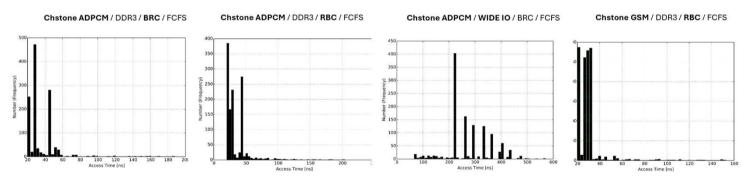
DRAM Basics

DRAM Commands

- ACT: Activates a specific row in a specific bank (sensing into PSA)
- RD: Read from activated row (prefetch from PSA to SSA and burst out)
- PRE: Precharges set LWL=0 set LBL=VDD/2
- REFA: DRAM cells are leaky and have to be refreshed



DRAM Behavior


Latency and energy breakdown e.g. DDR4, 4Gbit, 1200MHz, 64 bits burst read/write

Energy in Twitter memchached Application 2GB DDR3

Read

DRAM latency/energy) largely varies: access pattern, address mapping, scheduling....

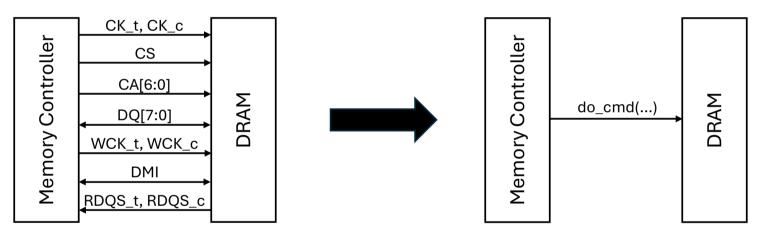
Up to 10x variance in access times \rightarrow row change in the same bank worst case: 42 clock cycles

Modelling of accurate DRAM timing and DRAM power are essential to assess the overall SoC performance and power/energy consumption

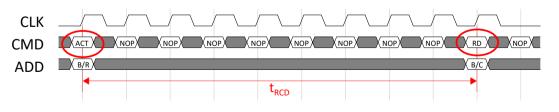
Open Source – DRAMSys/DRAMPower

DRAM timing modelling tools

- Big EDA vendors: no commercial interest/small market
- CPU/SoC vendors: internal modelling tools, not public
- Memory vendors: data/excel sheets, don't disclose internal details
- Academic tools
 - DRAMsim (University of Maryland), 2005
 - Gem5, 2011
 - DRAMSys + DRAMPower (RPTU, Fraunhofer IESE, JMU Würzburg), 2013
 - Ramulator (CMU/ETH) + VAMPIRE (CMU/ETH), 2015



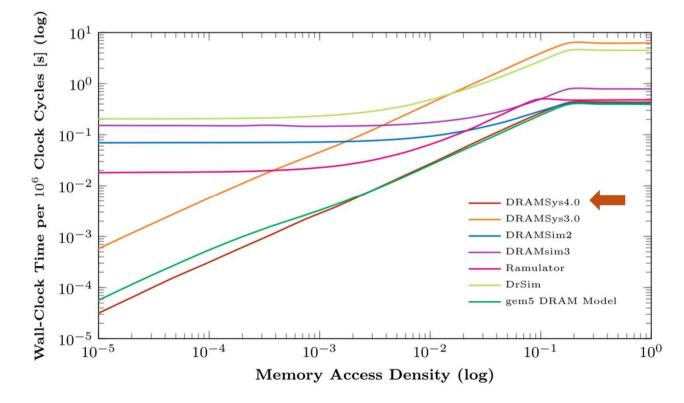
Simulation Speed vs. Simulation Accuracy



How can you accelerate simulation without losing accuracy?

Replace individual signals with function calls (concept of TLM)

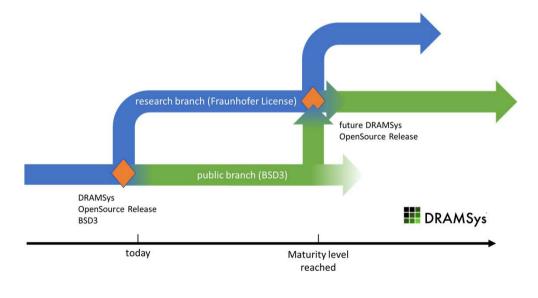
Simulate only the clock cycles (events) where "something" happens



Simulation Speed vs. Simulation Accuracy

- gem5's DRAM model: simplified model, does not fulfill JEDEC cycle accuracy
- DRAMsim, Ramulator, DRAMSys: clock cycle accuracy according to JEDEC protocol
- DRAMsim, Ramulator: based on clock cycle events

History of DRAMSys

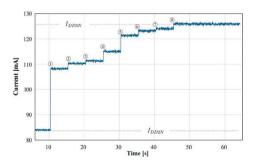

- Large DRAM knowledge within the group (DRAM industry background)
- First publication in 2013: "TLM modelling of 3D stacked wide I/O DRAM subsystems: a virtual platform for memory controller design space exploration", M Jung, C Weis, N Wehn, K Chandraseka
- Extended to DDR3, DDR4, LPDDR3 and HMC
- PhD students, master students, HiWi's -> Too many cooks spoil the broth...
- Completely rewritten
 - -Software architecture: enables easy integration of new standards and features
 - Support latest standards e.g. LPDDR4, GDDR6, HBM2
- Open-sourced in 2020 (BSD3): <u>https://github.com/tukl-msd/DRAMSys</u>

DRAMSys Freemium Business Model

- Established DRAM standards (DDR3/4, LPDDR4/4x, GDDR5/5x/6, HBM2) are open-sourced on GitHub
- Emerging DRAM standards (DDR5, LPDDR5, HBM3...) can be licensed via Fraunhofer IESE
 - Free academic licenses for research
 - Paid industrial licenses including support, consulting and custom modifications

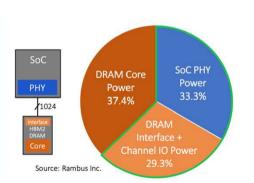
DRAMSys Facts and Figures

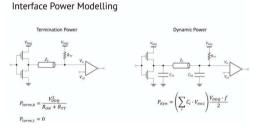
- DRAMSys
 - -4 key papers ~ 170 citations
 - -contributed to more than 20 further publications of the chair(s)
- Funding from DFG/BMBF/chair...
- More than 20 contributors and 2700 commits in master branch
- 240 stars and 60 forks on GitHub
- Large user community

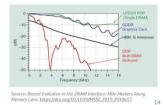


History of DRAMPower

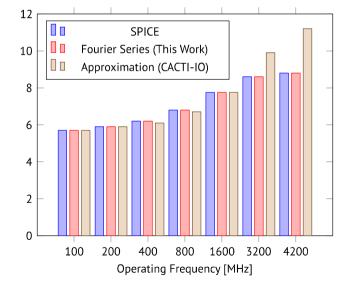
- Power model originally developed by TU Delft/TU Eindhoven in 2011
 - Goal: improve the accuracy of Micron's DRAM power calculators (Excel spreadsheets)
- RPTU-EMS
 - Validated and improved the model with circuit-level simulations
 - Took over management and further development
- First publication 2012: "DRAMPower Open-source DRAM power & energy estimation tool" K. Chandrasekar, C. Weis, Y. Li, B. Akesson, N. Wehn, K. Goossens
- First Open-Sourced in 2013
- Introduction of new features, e.g., a bank-sensitive power model


DRAMPower 5 - 2024


- Major updates in context of BMBF project DI-DERAMSys
- Improved software architecture
- Support for current DRAM standards (DDR5, LPDDR5, ...)
- Accurate interface power modelling



R



DRAMPower Facts and Figures

- State-of-the-art tool for DRAM power modelling
- Part of gem5
- 12 contributors and 400 commits on master branch
- DRAMpower papers ~ 300 citations
- 150 stars and 50 forks on GitHub
- DRAM Power 5.0 released 2024: <u>https://github.com/tukl-msd/DRAMPower</u>

Conclusion

Open-Source in Hardware Design: Hype or important new direction?

- Can ease technology access and contribute to technological sovereignty (for older technology nodes)
- Can complement/fill gaps that are not (yet) supported by commercial vendors, e.g. niche or new technologies
- Can broaden chip design community, education
- Many open challenges

.....

- PPA quality, maturity
- Support, business model

Thank You

CHIP HAPPENS

www.chipdesign-germany.de