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 Cloud is key in supply-chain of products/services
 Boom on machine learning-based services: e-business, science, etc.
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Computing Is Ever More Indispensable…

AI 
Applications



 Cloud is an essential pillar                                  
in our digital economy

 Today, multi-scale computing beyond 
“classical cloud” (Public, private,
and edge computing together)

 World’s sustainability with IT?
 Cloud growing: more services and 

datacenters, but not sustainability-driven

 Cloud cannot keep up with new trends 
without improving its efficiency
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Multi-Layer Cloud Systems: Energy Keeps Growing!

I use 17,000 times the amount of 
electricity than the average US household.

AI will run out of electricity and 
transformers in 2025. They're running out 

of transformers to run transformers.

[Gupta, et. al. 2021] 

Trend: DCs use 2% of global energy, they can reach 10% by 2030 
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Physical server

Hypervisor

Interference of different services – Virtual Machines (VMs)

Performance 
baseline

>8x performance 
degradation

Collocated black-box VMs can suffer from severe performance degradation
Performance of Redis benchmark

Interference Problem on (Virtualized) Cloud Services

Redis
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Solution: Over-provisioning to “guarantee” performance in DCs:               
Electricity and CO2 emissions skyrocketing!
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Exa-scale amounts of data from AI, genomics, … 

Multi-node scalability

Domain-specific computation

How to make CO2 reduction economically sustainable?

Global concern for energy 
consumption and lower 
carbon emission factor

Operational 
Footprint & Cost

CO2eq footprint from IT energy usage 
(computing, cooling, communications, etc.)

Embodied  
Footprint & Investment

Hardware manufacturing footprint
(fabrication, transportation, etc.)

CO2 Act, based on Paris Agreement: "Switzerland’s target for
2030 is to reduce greenhouse gas emissions by <50% compared
to 1990 level and (on average) <35% over the 2021–2030 period"

Real solutions: Minimize CO2 -eq emissions while maximizing return on 
investment in “sustainable technology” (i.e., incentives for companies)



How to reduce the dominant factor 
for carbon emissions and cost in DCs? 
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 Acceleration

𝑆𝑎𝑣𝑖𝑛𝑔𝑠 𝐸𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠 ൌ 𝑆𝑎𝑣𝑖𝑛𝑔𝑠 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑎𝑙 𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠 െ 𝐸𝑚𝑏𝑜𝑑𝑖𝑒𝑑 𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠
𝑆𝑎𝑣𝑖𝑛𝑔𝑠 𝐶𝑜𝑠𝑡 ൌ 𝑆𝑎𝑣𝑖𝑛𝑔𝑠 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑎𝑙 𝑐𝑜𝑠𝑡 െ 𝐼𝑛𝑣𝑒𝑠𝑡𝑚𝑒𝑛𝑡𝑠

Energy Efficiency 
Operational 
Emissions 
and Cost

Embodied 
Emissions and 
Investment

Build optimized libraries and domain-specific accelerators 
to make green computing economically feasible



Platforms
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CPU

GPU

FPGA

ASIC Domain-specific & reconfigurability are 
desirables for flexible SW and portable HW

CUDA GPUHLS FPGACharacteristics

HighHighProgramming support

HighMediumDesign Productivity

Low-MediumHighEnergy Efficiency

LowMediumLatency

HighHighScalability

LimitedHighFlexibility

Alveo V80 CardAgilex 7 M-Series Dev KitCharacteristics

132Mb BRAM + 541Mb URAM370Mb BRAM Internal memory 

32GB @ 810GB/s32GB @ 1TB/sHigh Bandwith Memory (HBM2e)

2.6M LUTs + 10.8K DSPs3.9M LEs + 12.3K DSPs + 1.3M ALMsCompute Elements

190 Watts(2x) 240 WattsMax Power (TDP)

32 GB64 GBGlobal Memory (DDR4/5)

2x PCIe 516x PCIe 5, CXL, GbE 116Gbps, fiber opticComms

7nm TSMC7nm IntelTechnology

600MHz-1GHz500MHz-1GHzMax Clock Freq

GPU vs FPGA

FPGA characteristics



Platforms

CPU

GPU

FPGA

ASIC

𝐸𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠 ൌ 𝑪𝑶𝟐𝒆𝒎𝒃𝒐𝒅𝒊𝒆𝒅 ൅ 𝑷𝒐𝒘𝒆𝒓 ∗ 𝑻𝒊𝒎𝒆 ∗ 𝐶𝑂2௜௡௧௘௡௦௜௧௬

𝐸𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠 ൌ 𝑪𝑶𝟐𝒆𝒎𝒃𝒐𝒅𝒊𝒆𝒅 ൅ 𝑷𝒐𝒘𝒆𝒓 ∗ 𝑻𝒊𝒎𝒆 ∗ 𝐶𝑂2௜௡௧௘௡௦௜௧௬

𝐸𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠 ൌ 𝑪𝑶𝟐𝒆𝒎𝒃𝒐𝒅𝒊𝒆𝒅 ൅ 𝑷𝒐𝒘𝒆𝒓 ∗ 𝑻𝒊𝒎𝒆 ∗ 𝐶𝑂2௜௡௧௘௡௦௜௧௬

𝐸𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠 ൌ ෍ 𝑪𝑶𝟐𝒆𝒎𝒃𝒐𝒅𝒊𝒆𝒅

஺௣௣௦

௔௣௣

൅ 𝑷𝒐𝒘𝒆𝒓 ∗ 𝑻𝒊𝒎𝒆 ∗ 𝐶𝑂2௜௡௧௘௡௦௜௧௬

𝐶𝑜𝑠𝑡 ൌ 𝑪𝒐𝒔𝒕𝒊𝒏𝒗𝒆𝒔𝒕𝒎𝒆𝒏𝒕 ൅ 𝑷𝒐𝒘𝒆𝒓 ∗ 𝑻𝒊𝒎𝒆 ∗ 𝐶𝑂2௜௡௧௘௡௦௜௧௬

𝐶𝑜𝑠𝑡 ൌ 𝑪𝒐𝒔𝒕𝒊𝒏𝒗𝒆𝒔𝒕𝒎𝒆𝒏𝒕 ൅ 𝑷𝒐𝒘𝒆𝒓 ∗ 𝑻𝒊𝒎𝒆 ∗ 𝐶𝑂2௜௡௧௘௡௦௜௧௬

𝐶𝑜𝑠𝑡 ൌ 𝑪𝒐𝒔𝒕𝒊𝒏𝒗𝒆𝒔𝒕𝒎𝒆𝒏𝒕 ൅ 𝑷𝒐𝒘𝒆𝒓 ∗ 𝑻𝒊𝒎𝒆 ∗ 𝐶𝑂2௜௡௧௘௡௦௜௧௬

𝐶𝑜𝑠𝑡 ൌ ෍ 𝑪𝒐𝒔𝒕𝒊𝒏𝒗𝒆𝒔𝒕𝒎𝒆𝒏𝒕

஺௣௣௦

௔௣௣

൅ 𝑷𝒐𝒘𝒆𝒓 ∗ 𝑻𝒊𝒎𝒆 ∗ 𝐶𝑂2௜௡௧௘௡௦௜௧௬

Emissions and cost may have different trade-offs points

Location & time 
dependent



Carbon Intensity:
Carbon & Electricity 
Price Maps
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app.electricitymaps.com/map

carbonpricingdashboard.worldbank.org/compliance/price

www.dashboardenergie.admin.ch/preise/strom-karte

Carbon Price 



Global trends in DC electricity consumption and mix

TWh

DC electricity demand is highly uncertain due to multiple factors
(energy efficiency improvements in new servers, AI uptake, etc.)



 Which investments scenarios are economically viable to reduce the total DC CO2-eq by >50% 
before 2030? 

 Which is the improvement factor (energy efficiency, acceleration, etc.) needed for a future platform to 
reduce CO2 without economic incentives?

 What is more economically sustainable, acceleration or energy efficiency to guide design space 
exploration for DCs in large case studies (AI, Astronomy and Genomics, etc.)?

Key research questions to address

12

Energy supply
Energy 
demand

AI carbon footprint 
optimizer given: 

grid emission factor, 
weather, DC KPIs

DC/platform local energy storage 
and renewable sources



Carbon savings of upgrading vs. non-upgrading servers: 
US case study

13

Carbon cost comparison among CPU-only, 1-GPU and
1-,2-,4-,8-FPGA servers in 4 different states in US

1. Ji, Shixin, et al. "SCARIF: Towards Carbon Modeling of Cloud Servers with Accelerators." 2024 IEEE Computer Society Annual Symposium on VLSI (ISVLSI). IEEE, 2024. 
https://arxiv.org/pdf/2401.06270v3

New server has a lower energy consumption in the
operational phase. Based on different carbon
intensity in different regions:
• Between 4 and ~10 years for breakeven point
• Two strategies (non-upgrading vs. upgrading) have

the same overall carbon cost.



Data centers (DCs) features 
known, but VMs/services        
are black boxes

Renewable energy 
provisioning and 

inclusion in Cloud

Sustainability-
Aware Cloud/DCs 

management

Black-Box VM 
performance 
estimation in 

different Clouds

Challenges in our Path to a Sustainable Cloud
Workload-aware 
server management

14



Main steps:
1. Monitoring data (black box)
2. Application identification
3. Performance prediction

VM
WS

VM
DS

Storage Network
virtualization solution

Performance monitoring

Application 
identification

Physical server Metrics sampling

Metrics 
selection

Performance 
prediction

Interference

CloudProphet: workload-aware ML-based 
performance prediction for public clouds

CloudProphet: Black-Box VM Performance Management

CloudProphet on IEEE
[Huang et al., TSUSC 2024]

CloudProphet-Dataset repo

15



 A few low-level hardware metrics are required

 Follow the black box assumption:
 No need to access the running application inside the VM

Monitoring data needs limited 

Example of monitored metrics

16



Online:
 Dynamic time warping (DTW) -based 

identification

Application Identification

Dynamic time 
warping (DTW)

Offline:
 Create the reference dataset (Fingerprint)

17



App: DS
Workload

Interference

Degrad. Factor 1

Degrad. Factor 2

Both user interaction and interference influence 
the performance level of the application!

Workload-Aware Performance Prediction
1. Performance Prediction
Metrics selection
 Neural network (NN) for 

each class of application

2. Performance Degradation 
Prediction
Workload prediction
 Initial baseline prediction 

dynamically readapted with 
an additional NN for 
inference detection

18



 Less than 7% prediction error after 20 days, better with more samples 

 5% performance prediction error after 2 months of operation

Trade-off between sampling time and prediction accuracy

Accurate Performance Prediction of CloudProphet

19



Data centers (DCs) features 
known, but VMs/services        
are black boxes

Renewable energy 
provisioning and 

inclusion in Cloud

Sustainability-
Aware Cloud/DCs 

management

Black-Box VM 
performance 
estimation in 

different Clouds

Challenges in our Path to a Sustainable Cloud
Workload-aware 
server management
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Datacenter always 
on…

Full power!

 Worse case resource provisioning paradigm: variable demand

21

Large Resource Wasted in Cloud Designs!

Time

W
ik

ip
ed

ia
W

or
kl

oa
d

[N. Rameshan, et al. 2014]

 Hint: Appropriate frequency scaling 
approach can significantly reduce 
energy use in data centers
 But VDD scaling is required (simple cores!)

Full power!

Waste

Waste



But Linux/Proprietary Scaling Governors Are Not Optimal

 powersave: 

 Performance and intel: 

 Take home messages:
 Linux/propr. scaling governors 

are clearly sub-optimal
 powersave governor is the most 

energy-intensive one
22



 An optimizer to select the best workload-frequency pairs
 [offline] Tuned per server family (tech. dependent)

 Recurrent NN for management: Modified Long short-term memory (LSTM)
 [offline] Customized training scheme
 [online] Runtime workload identification (CloudProphet) and DVFS setting

GreenDVFS: Workload-Aware Server Management

Workload 
identification

Workload 
probability

Profiling

Best workload-
frequency pairs

Training

DVFS

Optimizer

Freq.

Vo
lta

ge

… 2

3

1

offline online

Apps

Physical Server GreenDVFS (Camera-ready)
[Huang et al., CCGrid’24]
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 L(f): optimizes performance, power, and temperature
 Designed per server, fast tunable to different applications

Final Optimizer for Best Workload-Frequency Energy: 
Take it easy when going uphill!  

App: Data serving App: Web Search

GreenDVFS Intel

24



 Traditional LSTM training scheme puts much emphasis on the 
latest prediction results

 New proposed LSTM training scheme: early phases are key
 Keep only 50% previous training epoch for fast tuning with new data

Adapted LSTM-based Early Workload (DVFS) Tuning

A…

…

A A A …

…yt-3 yt-2 yt-1 yt

time

Epoch#4 [12%]Epoch#3 [25%]Epoch#2 [50%]Epoch#1 [100%]

Traditional LSTM training Customized LSTM training scheme 25



 No performance loss
 Up to 19% less energy consumed
 Up to 35% lower temperature in operation

GreenDVFS for Energy-Efficient Server Management

19%

35%

0%

26

And additional savings possible if fine-grained and fast voltage scaling 
is possible: open-source RISC-V servers coming up: SwissChips!



 3-year transitional measure funded by the State Secretariat for 
Education, Research and Innovation (SERI) 

 Goal: Swiss researchers to access and share advanced R&D 
infrastructure, fund cutting-edge R&D projects, and educate the 
Swiss talents in semiconductor tech. and IC design

: Supporting IC design in Switzerland

• FHGR
• FHNW
• HES-SO
• HSLU
• OST
• SUPSI
• ZHAW

• UniZH
• UniGE
• UniBA
• UniBE
• UniNE

• PSI
• Empa

27https://swisschips.ethz.ch/



Data centers (DCs) features 
known, but VMs/services        
are black boxes

Renewable energy 
provisioning and 

inclusion in Cloud

Sustainability-
Aware Cloud/DCs 

management

Black-Box VM 
performance 
estimation in 

different Clouds

Challenges in our Path to a Sustainable Cloud
Workload-aware 
server management
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 Merging EPFL central heating plant and DC
 Financial support of AVP-CP/VPA, VPO, and donations 

of the industrial affiliates of EcoCloud 

 Support multi-disciplinary research on energy-efficient DC and computing 
systems design: CS, EE, ME, etc. working together
 Kuma: New supercomputer to enable cutting-edge and sustainable research 
 Heating Bits: DCs integrating heating and cooling supply of local districts 
 UrbanTwin: A sustainable urban digital twin for climate action for Lausanne

Rethink DC Design: New DC and Experimental Facility on                       
Campus to Explore Sustainable Cloud Computing

29

At EcoCloud-EPFL, we look forward to share this facility for new 
and interesting projects!



EcoCloud Sustainable Experim. Computing Facility in EPFL DC
 ~150 m² of space for experiments 

on sustainable computing
 Recycled racks/donations 

 Experimental support: two spaces
 50KW per rack/2.5m rack
 Monitoring: energy, temp., etc.
 Cooling: air or water cooling

8 “enhanced” racks 
from production DCRacks with air/water passive cooling

30

Let’s improve the power consumed by AI!

Extra space for 
custom experiments

Controlled setup

Full supervision integrated with EPFL systemsUnderground 
water exchangers



Rethink DC design: Detailed monitoring/manag.  + 
Liquid Cooling for energy-efficient computing

 RCP – Water-cooled doors for AI/ML research

 383 GPUs - H100, A100, and V100 (55 nodes)

 Kuma – EPFL’s water-cooled supercomputer

 336 H100 GPUs (84 nodes), Nvlink (900 GB/s) 

[Courtesy: Water-Cooled BladeCenter HS22]

Ranked no. 23 in Green500: 54.9 Gflops / Watt
( #10 for academic institutions) 

31



Network

• Geo-distributed data centers (DCs)
• Multiple DCs in different locations 

connected through network
• How to allocate VMs to different DCs? 

• Ideal placement for green DCs
• How to manage renewable energy 

sources?

32

Include Sustainable Energy Sources: DCs Location



• DCs/VM manag. (CloudProphet + GreenDVFS)
• Global phase: clustering VMs into DCs
• Local phase: VMs allocation for minimum performance 

degradation

• ECOGreen: Low-complexity green           
energy controller
• Management of renewable energy
• Add batteries in DCs: charge / discharge decisions

Global phase 
(VMs clustering)

Local phase
(VMs allocation)

DC 1

Local phase
(VMs allocation)

DC N

Green 
controller

Green 
controller

33

ECOGreen: Sustainability-Aware Renewable Energy Management

ECOGreen Energy Controller
[Pahlevan et al., TSUSC 2020]



• Hour-ahead power market (bidding)

Time (1 hour) 

Ambient Temperature
Sun Irradiance Forecast

Server 
Specifics 

Bidding
Optimizer

1. Derivative method 
w.r.t. constraints

2. Solve for different 
number of servers

Renewable 
Forecast 

Bidding Problem

Battery 
Status

Workload

ሺ𝑷ഥ ,𝑹ሻ

𝑵𝒔
VMs Allocator 

Consolidation 
technique

Server Cap

VM Allocation

Revising ሺ𝑷ഥ ,𝑹ሻ

VMs CPU & Memory 
Pattern Prediction

Time (1 hour) 

Servers Utilization
Updated 𝑁௦

Update DC power 
consumption

Re-Evaluation

34

ECOGreen: Proposed Strategy

Independent 
System 
Operators 
(ISO) 



 In comparison to the-state-of-the-arts, ECOGreen
 71% reduction of financial costs
 48% increase of use in renewable energy (more sustainable!)

ECOGreen for Green and Sustainable DC

Normalized monetary cost (1-week time horizon)
Different power supply sources  (1-week time horizon)

35



Neural Architectures vs. GPUs
 Brain is ~160x better than our ICs (>1’000x more energy efficient)

36

Human brain (~20W), 
>10,000 TFLOPS

NVIDIA H100 (~700W), 
60 TFLOPS
NVIDIA H100 (~30,000W), 
~10,000 TFLOPS

x2



NVIDIA H100 (~30,000W), 
~10,000 TFLOPS

Neural Architectures: 3D Liquid-Based Cooling and Powering
 Brain is ~160x better than our ICs: 3D + Blood (both cooling and energy supply)
 PowerCool: Use microfluidic fuel cells to generate power

 Two electrolytes flowing in co-laminar regime, scalable for future 3D servers

Efficient coolingPower delivery

Integrated Cooling and Power Delivery

Fuel Oxidant

Electrodes

Power delivery network
Power delivery vias

[Courtesy: IBM, “Electronic Blood”, 2017]

37

Human brain (~20W), 
>10,000 TFLOPS

+To generate electricity: 
the warmer the better!



Inlet/Outlet 
Opening

Compusapien Chip:  5-Tier 3D AI Test Chip with Liquid Cooling 
Channels in Multiple Tiers (1000 W/cm2)

Uniform temp. at 52-55º C, and 30% self-recovered
energy possible (so heat finally could help!)

Energy-efficient 3D AI Computers are possible!
38https://www.epfl.ch/labs/esl/research/thermal-modelling/fuel-cell-arrays/



Heating Bits: Renewable-Supplied DCs Integrating                        
Heating and Cooling Supply of EPFL

1. Increase DCs energy efficiency and operate them with 
the least CO2 emissions
 Power-aware computing 
 Optimize power supply: converters
 Renewables and batteries integration
 Reuse of waste heat in EPFL campus (heating and warm water)

2. High-temp. liquid microcooling and electricity generation
 Maximize servers efficiency with microfluidic cold plate
 Transform heat back into electricity (Organic Ranking Cycle)

39© EPFL

Funded by EPFL’s Solutions for Sustainability (S4S) Initiative: 6 
laboratories and EcoCloud Center, stay posted for news soon!

https://heatingbits.epfl.ch/



Data centers (DCs) features 
known, but VMs/services        
are black boxes

Renewable energy 
provisioning and 

inclusion in Cloud

Sustainability-
Aware Cloud/DCs 

management

Black-Box VM 
performance 
estimation in 

different Clouds

Challenges in our Path to a Sustainable Cloud
Workload-aware 
server management
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 IT/Cloud has enabled our progress for 50+ years
 Multi-core servers and data centers are becoming more powerful
 Big Data + IoT era could be conceived…

 But current cloud systems are not sustainable; changes needed
 Very different and dynamic workloads than classical HPC
 Severe performance interference among VMs collocated together
 Very limited use of renewable energy supplies

 AI-based management of DCs to the rescue for a sustainable cloud!
1. CloudProphet: Accurate and adaptive to new workloads (<7% error in accuracy)
2. GreenDVFS: Higher energy efficiency per server (20% less energy, 35% less temp.)
3. ECOGreen: Multi-DC management + renewables (48% increase of renewables)

 Next-gen. sustainable cloud: New brain-inspired (open source) servers and DCs
41

Conclusion
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David Atienza Alonso  
EPFL - Embedded Systems Laboratory
david.atienza@epfl.ch

Thank you! 
Questions?
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