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$ Computing Is Ever More Indispensable...

= Cloud is key in supply-chain of products/services

=" Boom on machine learning-based services: e-business, science, etc.

Gene
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§ Molecular
Prediction s Dynamics
Al Medical
Applications

Analytics
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$ Multi-Layer Cloud Systems: Energy Keeps Growing!

Private '
Cloud is an essential pillar Edge Computing Cloud I?;Lljc?tljlg

in our digital economy @ an
=

._ | T o Dy
“classical cloud” (Public, private, ©)

= Today, multi-scale computing beyond

Users &
Devices

and edge computing together) .

=  World’s sustainability with IT?

= Cloud growing: more services and
datacenters, but not sustainability-driven

| use 17,000 times the amount of

. Al will run out of electricity and
" Cloud cannot keep up with new trends transformers in 2025. They're running out

without improving its efficiency of transformers to run transformers.

Trend: DCs use 2% of global energy, they can reach 10% by 2030

[Gupta, et. al. 2021]

electricity than the average US household.
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Cloud is an essential pillar E‘DeepMind Al reduces energy used for
in our digital economy cooling Google data centers by 40%

o
= Today, multi-scale computing beyond § '
“classical cloud” (Public, private, -
and edge computing together)

=  World’s sustainability with IT?

= Cloud growing: more services and
datacenters, but not sustainability-driven

. Al will run out of electricity and
" Cloud cannot keep up with new trends transformers in 2025. They're running out

without improving its efficiency of transformers to run transformers.

Trend: DCs use 2% of global energy, they can reach 10% by 2030
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Interference Problem on (Virtualized) Cloud Services

Interference of different services - Virtual Machines (VMs)

Performance >8X performance
baseline degradation

SRS l??
<+ m 0.2 04 0.6 0.8 1 1.2 14 186 1.8
e Execution time (ms) x10%

Physical server Performance of Redis benchmark

Collocated black-box VMs can suffer from severe performance degradation

Solution: Over-provisioning to “guarantee” performance in DCs:
Electricity and CO, emissions skyrocketing! ;
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$ How to make CO, reduction economically sustainable?

Electricity: Berlin's shock plan to adapt to the SUSta ina blhty cha "enges in DCs

weather . Exa-scale amounts of data from Al, genomics, ...
\

Companies may soon have to adapt their production to the strength of the wind and
the duration of sunshine, in order to relieve the electricity networks, put to the test by
the intermittency of renewable energies. This is the option proposed by the Ministry
of Economy and Climate in a note published in July. Enough to trigger the ire of the

business world.
-+ ,
Fy:

Global concern for energy
consumption and lower

carbon emission factor ’

Operational
Footprint & Cost -— W Footprint & Investment

CO2eq footprint from IT energy usage Hardware manufacturing footprint
(computing, cooling, communications, etc.) (fabrication, transportation, etc.)

Real solutions: Minimize CO, -eq emissions while maximizing return on

CO, Act, based on Paris Agreement: "Switzerland’s target for
2030 is to reduce greenhouse gas emissions by <50% compared
to 1990 level and (on average) <35% over the 2021-2030 period"

Embodied

investment in “sustainable technology” (i.e., incentives for companies)
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How to reduce the dominant factor

for carbon emissions and cost in DCs?

Operational Embodied =loto~
tEnergy Efficiency 2> ‘ Emissions Emissions and < || Acceleration
and Cost Investment

Savings Emissions = Savings operational emissions — Embodied emissions
Savings Cost = Savings operational cost — Investments

Build optimized libraries and domain-specific accele
to make green computing economically feasible
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$ Platforms

- N

CPU

GPU

FPGA

ASIC

GPU vs FPGA
Programming support  High High
Design Productivity Medium High
Energy Efficiency High Low-Medium
Latency Medium Low
Scalability High High
Flexibility High Limited

1000

100

—
o
1

Energy Efficiency (MOPS/mW)
i

Application-
t Specific

” S

~

—

\

!

- General
= OF Purpose

Domain-Specific
= | & Reconfigurable
~ Architectures

N

Flexibility & Programmability

FPGA characteristics

370Mb BRAM
32GB @ 1TB/s

Internal memory
High Bandwith Memory (HBM2¢)

Compute Elements

3.9M LEs + 12.3K DSPs + 1.3M ALMs

Characteristics Agilex 7 M-Series Dev Kit Alveo V80 Card

132Mb BRAM + 541Mb URAM

32GB @ 810GB/s

2.6M LUTs + 10.8K DSPs

Max Power (TDP) (2x) 240 Watts 190 Watts
Global Memory (DDR4/5) 64 GB 32GB

Comms 16x PCle 5, CXL, GbE 116Gbps, fiber optic 2x PCle 5
Technology 7nm Intel 7nm TSMC
Max Clock Freq 500MHz-1GHz 600MHz-1GHz

Domain-specific & reconfigurability are
desirables for flexible SW and portable HW
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Q Platforms

Emissions and cost may have different trade-offs points

Location & time

app

4 dependent
; \ A
@ CPU Emissions = CO2,ppodiea + Power xTime +CO2ipiensity
CORE i9 :
\
GPU Emissions = CO2opmpodiea + Power * Time +CO2ytensity
Cost = CoStinyestment + Power xTime HCO2ytensity
J
Emissions = CO2pppodiea + Power xTime *|COZiptensity
FPGA Cost = Costippestment + Power = Time *CO2iytensity
_J
Apps
Emissions = z CO2.mbodiea + Power +Time x COZintensity
app
ASIC a?
Cost = Z Costinpestment + Power * Time *|CO2ytensity
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Carbon Intensity:
Carbon & Electricity
Price Maps

L
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$ Global trends in DC electricity consumption and mix

Exploration

TWh 1500

LSOO sressssvssnsrssesrsssssssassssnsssiosssnsissisrssisrsssssisissssissssssosirsios s RN 1250

* Base 1000

750

500

250

2020 2025 2030 2035 0 T l T T 1 I I J
IEA. CC BY 4.0. 2020 2022 2024 2026 2028 2030 2032 2034

Coal @ Naturalgas © Nuclear @ SolarPV O Wind © Other renewables

DC electricity demand is highly uncertain due to multiple factors

(energy efficiency improvements in new servers, Al uptake, etc.)
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$ Key research questions to address

L
_._

Y @

I Al carbon footprint

[oe o o o]
optimizer given: Energy E ] E
Energy supply demand e | (52
grid emission factor, St

weather, DC KPls
‘ ..-l ’ DC/platform local energy storage

,l-\ l\ m and renewable sources

= Which investments scenarios are economically viable to reduce the total DC CO2-eq by >50%
before 20307

= Which is the improvement factor (energy efficiency, acceleration, etc.) needed for a future platform to
reduce CO2 without economic incentives?

=  What is more economically sustainable, acceleration or energy efficiency to guide design space
exploration for DCs in large case studies (Al, Astronomy and Genomics, etc.)?

12
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Carbon savings of upgrading vs. non-upgrading servers:
US case study

6.E+4
* B CPU-only =5 CPU+1GPU i CPU+1FPGA

5.E+4 ‘4 CPU+2FPGA &% CPU+4FPGA N\ CPU+8FPGA Xeon 8180 | Xeon 8375 V100 A100 | ZCU102
g’v 4,E+4 Latency (ms) 21798 176.68 296 1.84 32.72
::é, 3.E+4 Power (W) 205 300 250 175 25

2.E+4 . § Static Power (W)| 10 10 39 53 1

1.E+4 @m ¥ . ! 1%\\\: § Framework ONNX | ONNX |TensorRT|TensorRT |HeatViT

0.E+0 M= 1%%%&\. !§ 4=u=;!§§ = 73"‘-11 § §

years
6.E+3 — - Az F-CAl ] Carbon cost comparison among CPU-only, 1-GPU and
Breakeven Time: 1-,2-,4-,8-FPGA servers in 4 different states in US

4.E+3 4.2years (TX)
o 3’25::2%2 New server has a lower energy consumption in the
% 2.E+3 "9 syears (NY) .---'~__ operational phase. Based on different carbon
I B I i e T e

intensity in different regions:

 Between 4 and ~10 years for breakeven point

* Two strategies (non-upgrading vs. upgrading) have
the same overall carbon cost.

0.E+3

-2.E+3

1. Ji, Shixin, et al. "SCARIF: Towards Carbon Modeling of Cloud Servers with Accelerators." 2024 IEEE Computer Society Annual Symposium on VLSI (ISVLSI). IEEE, 2024.

https://arxiv.org/pdf/2401.06270v3 13
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$ Challenges in our Path to a Sustainable Cloud

Data centers (DCs) features ~ Workload-aware
known, but VMs/services server management
are black boxes

Sustainability-
Aware Cloud/DCs
management

Black-Box VM
performance Renewable energy

estimation in provisioning and
different Clouds inclusion in Cloud

14
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$ CloudProphet: Black-Box VM Performance Management

a-

/ \
[ Interference |
\ /

QM|

Physical server

CloudProphet: workload-aware ML-based
performance prediction for public clouds

Performance
prediction

Metrics
selection

Application

ll identification

Metrics sampling Performance monitoring

= Main steps:

1. Monitoring data (black box)
2. Application identification
3. Performance prediction

CloudProphet on IEEE
[Huang et al., TSUSC 2024]

CloudProphet-Dataset repo

15
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Monitoring data needs limited

= A few low-level hardware metrics are required

Example of monitored metrics

Category Typical extracted metrics

CPU utilization level (%)
Executed instructions (#)

LLC misses (#)
Memory Available memory space (KB)
Read requests issued for disk usage (#)

CPU

Received packets (Bytes)

Network Sent packets (Bytes)

= Follow the black box assumption:
= No need to access the running application inside the VM

16
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$ Application Identification

= Offline:

MS InMem Ws
200 200 200 200
N "
gwso b £ 150} SRE £150
3 *A” 13 T 100l 3
2100 -1 8100 8 100| S0 J\ )
Z 2 Z 2w
2 50 & s0 & s0 & sof KUYl
0 0 0 0
50 100150 100 200 300 20 40 20 40 60
Time (s) Time (s) Time (s) Time (s)

tlidean
distance

Reference
dataset

DS

gl

MS
W )
WS

DTW —>  dpys

» DTW —p dMS

Identification Resu It‘l\

Dynamic time
g™ warping (DTW)

= Create the reference dataset (Fingerprint)

= Online:

= Dynamic time warping (DTW) -based
identification
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I e
d M R1LW To——"
— fh | f ’ ‘I I ! ( V\YM.»A_/‘ \
io\'if)ﬂ‘jjjj' Ahhﬂlll' FH ’ I | I
o I (i m N |
E 100 L ‘ o v:~}<3-:-c\J.V..,.,.M,‘ \v—wl L,uh_v,l
2 | |
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Tlme (s)
200
vt
;3150 i
Rl
S 100} 7
o
O 50 Warped DS-1 |
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0 1 1 1 Il 1 1 1
0 50 100 150 200 250 300 350 400

Samples 17
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Q Workload-Aware Performance Prediction

Netrics from Metrics .I 1. Performance Prediction

- selaction | ‘ Peformance
Metrics " Metrics selection

Y se'ecLlﬁm A = Neural network (NN) for

P/ J Pe::j:?e | each class of application

Workload
° T T 2. Performance Degradation
Prediction
Both user interaction and interference influence = Workload prediction

NN _ L
the performance level of the application! = |nitial baseline prediction

Workioad Degrad. Factor 1 | dynamically readapted with
App: DS an additional NN for
interference Degrad. Factor 2 | inference detection

18
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$ Accurate Performance Prediction of CloudProphet

10

—C— Train
—&— Validation

Error (%)

0 500 1000 1500 2000 2500
Sampling time (h)

Trade-off between sampling time and prediction accuracy

= Less than 7% prediction error after 20 days, better with more samples

= 5% performance prediction error after 2 months of operation

19
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$ Challenges in our Path to a Sustainable Cloud

Data centers (DCs) features ~ Workload-aware
known, but VMs/services server management
are black boxes

Sustainability-
Aware Cloud/DCs
management

Black-Box VM
performance Renewable energy

estimation in provisioning and
different Clouds inclusion in Cloud

20
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$ Large Resource Wasted in Cloud Designs!

= \Worse case resource provisioning paradigm: variable demand

Datacenter always A [N. Rameshan, et al. 2014]
on T L

Wikipedia
Workload

A\ 4

Full power! Time

x10%

N
&

Full power!

Y

= Hint: Appropriate frequency scaling

T T T T
e |_ow workload
M| m— Heavy workload / (

A

approach can significantly reduce

Y

Waste ~

A

A

I\

App. Performance
(ops/s)
[} - a N

V\/aste |

7

\ 4

energy use in data centers
= But VDD scaling is required (simple cores!) T M e )

1 1
3500 4000 4500

21
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$ But Linux/Proprietary Scaling Gove

= powersave: (@}

25

N

App. Performance
(opsl/s)
o

Normalized
Power
©

Performance and intel: h) |

Normalized
Temperature

o
(o)
T

Take home messages:
= Linux/propr. scaling governors
are clearly sub-optimal

= powersave governor is the most
energy-intensive one

Normalized
Energy

x10%

rnors Are Not Optimal

T T
s | ow workload
[ | me——s Heavy workload

o -
S aom N
T T

o
o

| 1 1 1 1 1 1
1000 1500 2000 2500 3000 3500 4000
T T T T T T T

95
09r

0
085

1 1 1 L L Il
1000 1500 2000 2500 3000 3500 4000
T T T T T T

1 1 1 1 1 1
1000 1500 2000 2500 3000 3500 4000
T T T T T T

| 1 1 I Il 1
1000 1500 2000 2500 3000 3500 4000
Core freq. (MHz)

45%02
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$ GreenDVFS: Workload-Aware Server Management

offline online -
o [m] i [m]
n

Apps Optimizer [ Best workload- -
frequency pairs
2 ; .
j Training 8 _/
—> Profiling E — 7 | E
XN ® Freq.
w DVES
— — Workload N Workload
Physical Server identification | | probability GreenDVFS (Camera-ready)
1 [Huang et al., CCGrid’24]

= An optimizer to select the best workload-frequency pairs
= [offline] Tuned per server family (tech. dependent)

= Recurrent NN for management: Modified Long short-term memory (LSTM)

= [offline] Customized training scheme
= [online] Runtime workload identification (CloudProphet) and DVFS setting

23
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$ Final Optimizer for Best Workload-Frequency Energy:
Take it easy when going uphill!

= L(f): optimizes performance, power, and temperature

= Designed per server, fast tunable to different applications

‘— O — GreenDVFS — A Intel\l
d
350 \
V4N

€, 3100MAz
——

“%.2100MH S
B o 44 3300MHz _Bsoom
" 15 (‘j_ r——_
= -y v 2300MHz
s = 2700MHz -
- 3
. 0.5+ ' o5
- -
° [©]
~ 2.5 Z 200
00 - %0 200
4000 3500 - <10 4000 5e00 —
3000 3000
2500 2000 4509 05 2508 D000 450
FI‘e (MHZ) 1 000 Workload Fre (MHZ) 1 000 WOI‘kloa,d
e (Throughput) E (Clients)

App: Data serving App: Web Search

24
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$ Adapted LSTM-based Early Workload (DVFS) Tuning

= Traditional LSTM training scheme puts much emphasis on the
latest prediction results

- | Epoch#1 [100%] Epoch#2 [50%] Epoch#3 [25%] Epoch#4 [12%]
! h_ h

5
i b s masd i |
i

ol

WAttt ! : '
E i : : > time L L
ATV FRIRESYARY N
,,,,,, A g TR i

= New proposed LSTM training scheme: early phases are key
= Keep only 50% previous training epoch for fast tuning with new data

iD YA PR — — —uwkh
| Ly T Wi\, — — — wkl
" _— —T_Uk)l.i
Et ﬂ | /}&j g o whi
-1 Wiry W
60 80

N
SO = —O— wkl;

100 120 140 160 180 200

T orororoToToToTOT T oTT A=A AT AT = ) L o

1
I

=y

e
w
!

Probability

Probability
o
(4]

1 1 1 1 1 1 1 1 1 1
20 40 60 80 100 120 140 160 180 200
time (s)

Customized LSTM training scheme 5

o

0 oyl
0 20 40
time (s)

Traditional LSTM training
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$ GreenDVFS for Energy-Efficient Server Management

40 T T 3b%

I
[ Perf [ Power [ | Energy (I Temp

w
o
I

]

9%

1
oo/l
. I.I -.I y |

WS RS DS
= No performance loss

Improvements (%)
= N
o o
[ [

= Upto 19% less energy consumed
= Up to 35% lower temperature in operation

And additional savings possible if fine-grained and fast voltage scaling

is possible: open-source RISC-V servers coming up: SwissChips!

26
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$ £5F swissChips: Supporting IC design in Switzerland

= 3-year transitional measure funded by the State Secretariat for
Education, Research and Innovation (SERI)

= Goal: Swiss researchers to access and share advanced R&D
infrastructure, fund cutting-edge R&D projects, and educate the
Swiss talents in semiconductor tech. and IC design

= CSem ETHzurich

* FHGR
e FHNW
UniZH * HES-SO
UniGE « HSLU
UniBA * OST
* PSI UniBE » SUPSI
* Empa UniNE e ZHAW

=PrL

https://swisschips.ethz.ch/
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$ Challenges in our Path to a Sustainable Cloud

Data centers (DCs) features ~ Workload-aware
known, but VMs/services server management
are black boxes

Sustainability-
Aware Cloud/DCs
management

Black-Box VM
performance Renewable energy

estimation in provisioning and
different Clouds inclusion in Cloud

28
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$ Rethink DC Design: New DC and Experimental Facility on

Campus to Explore Sustainable Cloud Computing

= Merging EPFL central heating plant and DC

* Financial support of AVP-CP/VPA, VPO, and
of the industrial affiliates of EcoCloud

=. Microsoft ‘g"é ('ntel HewlettPackard  |BM Research Europe @ DeepSquare  JAX ] ]
HUAWEI

Enterprise F g

ORACLE OQMetCI M IIi[*]Ventures wﬁak &corimis JJ%Q&%L%GN MATEG

= Support multi-disciplinary research on energy-efficient DC and computing
systems design: CS, EE, ME, etc. working together

= Kuma: New supercomputer to enable cutting-edge and sustainable research
= Heating Bits: DCs integrating heating and cooling supply of local districts

) L)[.At EcoCIoud-E-PF.L', we look forward to share this fécility for new ]
and interesting projects!

29



iEL EcoCloud Sustainable Experim. Computing Facility in EPFL DC

150 m? of space for experiments -

on sustainable computing Let’s improve the power consumed by Al!
= Recycled racks/donations ‘ —T ~adib

= Experimental support: two spaces | ,, | , SN
= 50KW per rack/2.5m rack i 7 NI
. Monltormg: energy, ten Contrlolled setup ~ﬁ_;—ﬁ;ﬁ:: 1 S S

= Cooling: air or water co

8 “enhanced” racks Extra space for
from production DC custom experiments

Full supervision integrated with EPFL systems

30



iEL Rethink DC design: Detailed monitoring/manag. + SCITAS
Liquid Cooling for energy-efficient computing 3

EcoCloud

= RCP - Water-cooled doors for Al/ML research Lenovo
= 383 GPUs - H100, A100, and V100 (55 nodes)

[Courtesy: Water-Cooled BladeCenter HS22]
= Kuma - EPFL's water-cooled supercomputer

= 336 H100 GPUS 84 nodes Nvllnk 900 GB/s

The
GREEN

50Q CERTIFICATE

Kuma - ThinkSystem SR675 V3, AMD EPYC 9334 32C 2.7GHz, NVIDIA H100, ConnectX-7 Infiniband, S
Red Hat Enterprise Linux

Ecole Polytechnique Federale de Lausanne, Switzerland
is ranked
No. 23

among the World's TOP500 Supercomputers

in the Green500 List published at the SC24

Conference on November 19, 2024.

Congratulations from the Green500 Editors

rrrrrrrrrrrrrrrrrrrrrrrrr

Ranked no. 23 in Green500: 54.9 Gflops / Watt
( #10 for academic institutions)

31
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$ Include Sustainable Energy Sources: DCs Location

 Geo-distributed data centers (DCs)

e Multiple DCs in different locations
connected through network

e How to allocate VMs to different DCs?

e ldeal placement for green DCs

e How to manage renewable energy

?
sources: Regulation Consumers & Capacity Reserves
Requests

On-Site (Demand-Side) Sources i
1

PV Module EES

=

Equipment

Rack \

Market :
: v v v v
|
. :
32

Bidding in Power

Jajuadeleq usain o
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$ ECOGreen: Sustainability-Aware Renewable Energy Management

DCs/VM manag. (CloudProphet + GreenDVFS)

* Global phase: clustering VMs into DCs
» Local phase: VMs allocation for minimum performance

Global phase
(VMs clustering)

degradation —
_ Local phase Local phase
« ECOGreen: Low-complexity green (VMs allocation) (VMs allocation)
energy controller it i
« Management of renewable energy
» Add batteries in DCs: charge / discharge decisions
Green Green
ECOGreen Energy Controller controller controller

[Pahlevan et al., TSUSC 2020]

33
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$ ECOGreen: Proposed Strategy

« Hour-ahead power market (bidding)

—

-

VMs CPU & Memory
Pattern Prediction

>

Time (1 hour)

Ambient Temperature
Sun Irradiance Forecast

>
Time (1 hour)

Bidding Problem

/ N\
[ Server
', Specifics

N\ /

J

Bidding

P e

\
; Optimizer

\ /

N\ /

o ~. f 1. Derivative method
/' Battery w.r.t. constraints

|

\ ) .

\ Status ,l 2. Solve for different
number of servers

-
/ N\ ‘
/ Renewable| ) 1

'. Forecast ,
/7

\
N\

e
' \
:(\Server Ca le

~
e = - -

Independent
System
Operators

VM Allocation (1S0)
~ ~

VMs Allocator

Consolidation
technique

J

Revising (P, R)

Servers Utilization
Updated N

v

Re-Evaluation

Update DC power
consumption
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$ ECOGreen for Green and Sustainable DC

) Power Grid PV M EES (Discharge)
PSA+DynPow w/o Bid

w

PSA+DynPow

COAT+DynPow w/o Bid

COAT+DynPow 3
ECOGreen w/o Bid
ECOGreen m

Oracle ECOGreen

=

R

Total Power Consumption (GW)
N

000 020 040 060 080 1.00 120 38 Han
Normalized Cost ECOGreen ECOGreen COAT

Normalized monetary cost (1-week time horizon) _ w/o Green _ .
Different power supply sources (1-week time horizon)

o

= |n comparison to the-state-of-the-arts, ECOGreen

= 71% reduction of financial costs
= 48% increase of use in renewable energy (more sustainable!)

35



=PrL

Neural Architectures vs. GPUs

" Brain is ~¥160x better than our ICs (>1’000x more energy efficient)

Human brain (~20W),  NyIDIA H100 (~30@WQW),
>10, OOO TFLOPS 6QJPICIPELOPS

3 3 3 - 3 - 2 o & = 3
= S g 3 Sa g, S S 3, P> > < Fa o
0, 3, S, «) ‘o ‘; -) .-) o, Lo, a <> a a
£ £ v - _, 3 .r ,r : - ‘ ,—
o pC)




EPFL
$ Neural Architectures: 3D Liquid-Based Cooling and Powering

= Brain is ~160x better than our ICs: 3D + Blood (both cooling and energy supply)

= PowerCool: Use microfluidic fuel cells to generate power
= Two electrolytes flowing in co-laminar regime, scalable for future 3D servers

H:g‘gggrai" é~§0w)’ NVIDIA H100 (~30,000W),
>10, TFLOP -
P 10,000 TFLOPS Power delivery Efficient cooling

=

—ul - : ‘ . O ﬁ - =
To generate electr =
the warmer the better!

Lt d

Integrated Cooling and Power Delivery  Sda S :
H HH HH [Courtesy: IBM, “Electronic Blood”, 2017]

) Power delivery vias
Processing Architecture / ] Electrodes y
Power delivery network
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g Compusapien Chip: 5-Tier 3D Al Test Chip with Liquid Cooling
Channels in Multiple Tiers (1000 W/cm?)

I

!'Uullhm'ni“m

-

N

l”

|

38
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iEL Heating Bits: Renewable-Supplied DCs Integrating

Heating and Cooling Supply of EPFL - Ao’
1. Increase DCs energy efficiency and operate them with
the least CO, emissions

Power-aware computing

Optimize power supply: converters

Renewables and batteries integration

Reuse of waste heat in EPFL campus (heating and warm water)

2. High-temp. liquid microcooling and electricity generation

= Maximize servers efficiency with microfluidic cold plate
= Transform heat back into electricity (Organic Ranking Cycle)

Funded by EPFL’s Solutions for Sustainability (S4S) Initiative: 6

laboratories and EcoCloud Center, stay posted for news soon!

© EPFL https://heatingbits.epfl.ch/
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$ Challenges in our Path to a Sustainable Cloud

Data centers (DCs) features ~ Workload-aware
known, but VMs/services server management
are black boxes

Sustainability-
Aware Cloud/DCs
management

Black-Box VM
performance Renewable energy

estimation in provisioning and
different Clouds inclusion in Cloud
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Conclusion

IT/Cloud has enabled our progress for 50+ years

= Multi-core servers and data centers are becoming more powerful

= Big Data + loT era could be conceived...

= But current cloud systems are not sustainable; changes needed

= Very different and dynamic workloads than classical HPC
= Severe performance interference among VMs collocated together

= Very limited use of renewable energy supplies

COMPUSAPIEN  HEATING BITS

+E SwissChips

= Al-based management of DCs to the rescue for a sustainable cloud!

1. CloudProphet: Accurate and adaptive to new workloads (<7% error in accuracy)
2. GreenDVFS: Higher energy efficiency per server (20% less energy, 35% less temp.)
3. ECOGreen: Multi-DC management + renewables (48% increase of renewables)

= Next-gen. sustainable cloud: New brain-inspired (open source) servers and DCs
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