Design Automation for Reversible Quantum-Flux-Parametron Logic -- Towards Energy-Efficient Superconducting Circuits

Tsung-Yi Ho

tyho@cse.cuhk.edu.hk

Intelligent DEsign Automation Lab (IDEAL) Department of Computer Science and Engineering The Chinese University of Hong Kong, Shatin, Hong Kong

Content

- Introduction
- Extreme Energy Efficiency
 - Reversible Quantum-Flux-Parametron (RQFP)
- Automatic Synthesis of RQFP Circuits
 - Exact Logic Synthesis (ICCAD'23)
 - RCGP (DAC'24, TCAD25)
- Conclusion and Future Work

Introduction

Overview and research background

Energy Efficiency Calling

Trend of rising electricity demand of information and communications technology^[1]

Currently 10% of the total electric power

9,000 terawatt hours (TWh)

- NVIDIA's projected shipment: 1.5 million AI server units annually by 2027, consuming at least 85.4 TWh of electricity annually when running at full capacity. ^[2-3]
- Bitcoin's electricity consumption is more than what many small countries use in a year. ^[4]
- Around the globe, data centers currently account for about 1 to 1.5 percent of global electricity use. (460 TWh in 2022) ^[5]

Poland	Line and the second sec	Bitcoin	South Africa	Thailand
158.2	168.3	181.3	191.4	202.6
^{TWh per}	TWh per	^{TWh per}	TWh per	TWh per
year	year	year	year	year

Jones N. How to stop data centres from gobbling up the world's electricity. Nature. vol. 561, no. 7722, pp. 163–166, Sep. 2018.
 Bary, E. Nvidia is 'dominating' and could unlock \$300 billion in AI revenue by 2027, analyst says. MarketWatch. July 24, 2023.
 Alex de Vries, The growing energy footprint of artificial intelligence, vol. 7, no. 10, pp. 2191-2194, 2023.
 University of Cambridge Bitcoin Electricity Consumption Index: <u>https://ccaf.io/cbeci/index/comparisons</u> (June 2025).
 International Energy Agency, <u>https://www.iea.org/energy-system/buildings/data-centres-and-data-transmission-networks#overview.</u>

Superconductor Electronics

• High speed and low-power consumption.

Switching Energy	Frequency				
	T 1				
	Switching Energy er switching event according t				

Superconductor electronics become an attractive candidate for future computing systems due to their characteristics of high speed and low-power consumption.

Superconductor Electronics Technology

Josephson junction (JJ)

superconductors

barrier

OO

 $(\Theta\Theta)$

 $(\Theta\Theta)$

Switching time: $\sim 1 \text{ ps}$

 $\Theta\Theta$

00

(OO

 Ψ_2 (OO)

ΘÐ

Characteristic voltage: 0.5 - 1 mV

Characteristic energy: $\sim 10^{-19}$ J

 $\phi = (\varphi_1 - \varphi_2)$

Applications

-- Microprocessor [8-9]

Voltage standard ^[10] Single photon detection ^[11]

Quantum computing ^[12]

CORE e2h RSFQ Microprocessor [8]

NIST Voltage Standard Chip [10]

Google's Quantum Sycamore Chip [12]

MANA Microprocessor [9]

SNSPD + SFQ Merger [11]

[8] Tanaka *et al.*, "Execution of stored programs by a rapid single-flux-quantum random-access-memory-embedded bit-serial microprocessor using 50-GHz clock frequency," *Appl. Phys. Phys. Phys. Lett.*, vol. 50, no. 4, pp. 115
[9] Ayala *et al.*, "MANA: A Monolithic Adiabatic iNtegration Architecture Microprocessor Using 1.4-zJ/op Unshunted Superconductor Josephson Junction Devices," IEEE JSSC, vol. 50, no. 4, pp. 115
[10] Benz *et al.*, "Application of the Josephson effect to voltage metrology," in Proceedings of the IEEE, vol. 92, no. 10, pp. 1617-1629, Oct. 2004.
[11] Miyajima *et al.*, "Single-flux-quantum signal processors monolithically integrated with a superconducting nanostrip single-photon detector array," *Appl. Phys. Lett.*, vol. 122, no. 18, May 2023.
[12] Arute *et al.*, "Quantum supremacy using a programmable superconducting processor," *Nature*, vol. 574, no. 7779, pp. 505–510, Oct. 2019.

Superconductor Electronics Technology

Superconducting logic circuit family:

Comparison of energy-delay products of AQFP, ERSFQ, RSFQ, and CMOS circuits.^[17]

[13] K. Likharev and V. Semenov, "RSFQ logic/memory family: a new Josephson-junction technology for sub-terahertz-clock-frequency digital systems," IEEE TAS, vol. 1, no. 1, pp. 3–28, 1991.
[14] O. A. Mukhanov, "Energy-efficient single flux quantum technology," IEEE Transactions on Applied Superconductivity, vol. 21, no. 3, pp. 760–769, 2011.
[15] Q. P. Herr, A. Y. Herr, O. T. Oberg, and A. G. Ioannidis, "Ultra-low-power superconductor logic," Journal of Applied Physics, vol. 109, no. 10, p. 103903, 2011.
[16] Takeuchi *et al.*, "An adiabatic quantum flux parametron as an ultra-low-power logic device," Superconductor Science and Technology, vol. 26, no. 3, p. 035010, Jan 2013.
[17] O. Mukhanov, N. Yoshikawa, I. P. Nevirkovets, and M. Hidaka, "Josephson Junctions for Digital Applications," Cham: Springer International Publishing, pp. 611–701, 2019.

Adiabatic Quantum-Flux-Parametron (AQFP)

- Very small switching energy due to adiabatic operation.
 - AQFP gate switching energy ranges from 10^{-20} J to 10^{-21} J at 5 GHz operation.^[18]
- Clock speeds on par with state-of-the-art CMOS logic (5-10 GHz)
 - Typically, 5 GHz for adiabatic switching
- A 2.5 GHz prototype AQFP-based processor (MANA) has achieved an energy efficiency that was **80 times** that of 7-nm FinFET equivalent technology, even accounting for the cooling.^[9]

Ultra-high energy efficiency

Fundamental Component – AQFP Buffer

AQFP buffer:

- Data output (q) value depends on the direction of the data input (a) current I_{in} .
- AC I_x serves as the excitation current and the clock signal X_{in} .
- DC I_d provides +/- offset to AC.

Make up logic cells using AQFP buffers

• 3-input majority gate

 $-I_{in} \rightarrow SFQ$ stored in right loop, logic '0'.

AQFP EDA Tool Chain Development

[ICCAD'21] C. -Y. Huang, Y. -C. Chang, M. -J. Tsai and T. -Y. Ho, "An Optimal Algorithm for Splitter and Buffer Insertion in Adiabatic Quantum-Flux-Parametron Circuits," ICCAD, 2021.
[ASPDAC'23] Rongliang Fu, Mengmeng Wang, Yirong Kan, Nobuyuki Yoshikawa, Tsung-Yi Ho, and Olivia Chen, "A Global Optimization Algorithm for Buffer and Splitter Insertion in Adiabatic Quantum-Flux-Parametron Circuits," ASPDAC, 2023.
[DATE'23] Rongliang Fu, Junying Huang, Mengmeng Wang, Yoshikawa Nobuyuki, Bei Yu, Tsung-Yi Ho, and Olivia Chen, "BOMIG: A Majority Logic Synthesis Framework for AQFP Logic," DATE, 2023.
[TCAD] Rongliang Fu, Mengmeng Wang, Yirong Kan, Olivia Chen, Nobuyuki Yoshikawa, Bei Yu, Tsung-Yi Ho, "Buffer and Splitter Insertion for Adiabatic Quantum-Flux-Parametron Circuits," TCAD, 2024.
[ICCAD'20] Y. -C. Chang, H. Li, O. Chen, Y. Wang, N. Yoshikawa and T. -Y. Ho, "ASAP: an analytical strategy for AQFP placement", ICCAD, 2020.
[ICCAD'23] Rongliang Fu, Olivia Chen, Bei Yu, Nobuyuki Yoshikawa and Tsung-Yi Ho, "DLPlace: A Delay-Line Clocking-based Placement Framework for AQFP Circuits," ICCAD, 2023.

Extreme Energy Efficiency Calling

• However, the minimum energy dissipation of these irreversible superconducting digital circuits, even AQFP, could still **not be lower than the order of** K_B **T** ln **2**, according to Landauer's principle.

Rolf Landauer: Whenever using a logically irreversible gate, we dissipate energy into the environment.

- Information is physical
- Information loss = energy loss
- How can we break the minimum energy bound of $K_B T \ln 2$?
 - **Reversible computing:** No energy dissipation for logic operations in reversible computing without the reduction in information entropy, under ideal physical circumstances
 - Logical reversibility: A one-to-one mapping between vectors of inputs and outputs.
 - Physical reversibility: no increase in physical entropy (adiabatic computing)

Reversible Logic Circuits

- Younis & Knight, 1994 [21]
 - Simplified 3-level adiabatic CMOS design family (SCRL)
- Subsequent works at MIT, 1995-99^[22]
 - Various chips designed using SCRL
- Work at Sandia, 2020 [23]
 - 2LAL (two-level adiabatic logic) shift register
- Work at Prof. Yoshikawa's group, 2014-^[24-25]
 - Reversible Quantum Flux Parametron (RQFP)
 - 1-bit RQFP full adder (RFA)^[26] dissipate < *kT* ln 2 (even at T = 4K), at speeds on the order of 10 MHz.

 ^[21] Saed G. Younis, "Asymptotically zero energy computing using split-level charge recovery logic," Ph.D. thesis, MIT, 1994.
 [22] Frank et al., "Reversible Computing with Fast, Fully Static, Fully Adiabatic CMOS," ICRC, 2020.
 [23] M. P. Frank et al., "Special Session: Exploring the Ultimate Limits of Adiabatic Circuits," *ICCD*, pp. 21-24, 2020.
 [24] Takeuchi et al., "Reversible logic gate using adiabatic superconducting devices", Scientific Reports, vol. 4, p. 6354, 2014.
 [25] Takeuchi et al., "Reversibility and energy dissipation in adiabatic superconductor logic," Scientific Reports, vol. 7, p. 75, 2017.
 [26] Yamae et al., "A reversible full adder using adiabatic superconductor logic," Superconductor Science and Technology, vol. 32, no. 3, p. 035005, 2019.

Extreme Energy Efficiency Reversible Quantum-Flux-Parametron First practical reversible logic gate

Reversible Quantum-Flux-Parametron (RQFP)

- The first practical reversible logic gate^[24-25] using AQFP technology.
- Its logical and physical reversibility has been demonstrated experimentally.
- Composed of AQFP-based majority and splitter cells.

	Inpu	t	Output						
а	b	С	Х	У	Z				
0	0	0	0	0	0				
0	0	1	1	1	0				
0	1	0	1	0	1				
0	1	1	1	0	0				
1	0	0	0	1	1				
1	0	1	0	1	0				
1	1	0	0	0	1				
1	1	1	1	1	1				

where M(a, b, c) = ab + ac + bc $R(a, b, c) = \{M(\overline{a}, b, c), M(a, \overline{b}, c), M(a, b, \overline{c})\}$

logical reversibility

Characteristics of RQFP Logic – Functionality

- For a normal RQFP gate, $R(a, b, c) = \{M(\overline{a}, b, c), M(a, \overline{b}, c), M(a, b, \overline{c})\}.$
- Since inverters can be freely integrated into any input of each AQFP majority, the functionality of RQFP logic gates can be extended for better RQFP circuit designs.
 - each output of an RQFP logic gate can have **eight function choices**: M(a, b, c), $M(a, b, \bar{c})$, $M(a, \bar{b}, c)$, $M(a, \bar{b}, c)$, $M(\bar{a}, b, c)$, $M(\bar{a}, b, \bar{c})$, $M(\bar{a}, \bar{b}, \bar{c})$, and $M(\bar{a}, \bar{b}, \bar{c})$.

Characteristics of RQFP Logic – Functionality

However, not all inverter configurations for an RQFP logic gate can make the gate logically reversible.

• For example, for $R(a, b, c) = \{M(a, b, c), M(a, b, c), M(a, b, c)\}, R(1, 1, 1) = R(1, 1, 0) = \{1, 1, 1\}$

Logical reversibility requires a one-to-one mapping between vectors of inputs and outputs.

- Any two outputs in the truth table of an RQFP logic gate with inverter configuration *ic* must be different.
- Specifically, for any two distinct data input vectors d_1 and d_2 with respective indices $x_1 \in [0,2^3)$ and $x_2 \in [0,2^3)$, $x_1 \neq x_2$, in the truth table.

$$\bigvee_{i \in [0,3)} \underset{j \in [0,3)}{\mathsf{M}} (ic[i][j] \oplus d_1[j]) \oplus \underset{j \in [0,3)}{\mathsf{M}} (ic[i][j] \oplus d_2[j])$$

where $d_1 = \{x_1 \land 1, (x_1 \gg 1) \land 1, (x_1 \gg 2) \land 1\}$ and $d_2 = \{x_2 \land 1, (x_2 \gg 1) \land 1, (x_2 \gg 2) \land 1\}$.

Overall, there are a total of $2^9 = 512$ possible functions, of which **192** are logically reversible.

Now, how can we design RQFP logic circuits using these reversible gates?

Refer to AQFP Logic Circuit Design

• Since RQFP is a derivative technology of AQFP, we first introduce the characteristics of AQFP logic.

1. Clock-synchronized data propagation

All inputs to each gate have the same delay (clock phases) from primary inputs.

An example shows the necessity of **buffer insertion** for correct operation in an AQFP circuit with the function q = a & b & c.

2. Single fan-out limitation

Multi-fan-out implementation via the special cell named **splitter**.

• The splitter requires a clock signal.

AQFP Logic Circuit Design – Technology Legalization

• For a 1-bit full adder,

• AND-OR-Inverter (AOI) :
$$\begin{cases} carry = a \cdot b + (a + b) \cdot c \\ sum = (a + b + c) \cdot \overline{carry} + a \cdot b \cdot c \end{cases}$$

• Majority-Inverter graph (MIG)^[27]:
$$\begin{cases} carry = M(a, b, c) \\ sum = M(a, M(\overline{a}, b, c), \overline{carry}) \end{cases}$$

- Technology legalization
 - Meet clock synchronization and fan-out limitation requirements.

So, RQFP logic circuits also require buffers and splitters for technology legalization.

Characteristics of RQFP Logic – Buffer and Splitter

- For clock-synchronized data propagation,
 - insert RQFP buffers formed by two cascaded AQFP buffers.

- For multiple fan-outs,
 - the RQFP splitter can be realized by the combination of an RQFP gate and constants.
 - i.e, the **1-to-2** splitter $R(1, x, 1) = \{M(\overline{1}, x, 1), M(1, \overline{x}, 1), M(1, x, \overline{1})\} = \{x, 1, x\}.$

[ICCAD'23] Rongliang Fu, Olivia Chen, Nobuyuki Yoshikawa and Tsung-Yi Ho, "Exact Logic Synthesis for Reversible Quantum-Flux-Parametron Logic," ICCAD, pp. 1-9, 2023. [DAC'24] Rongliang Fu, Robert Wille and Tsung-Yi Ho, "RCGP: An Automatic Synthesis Framework for Reversible Quantum-Flux-Parametron Logic Circuits based on Efficient Cartesian Genetic Programming," DAC, pp. 1-6, 2024. [TCAD25] Rongliang Fu, Robert Wille, Nobuyuki Yoshikawa and Tsung-Yi Ho, "Efficient Cartesian Genetic Programming-based Automatic Synthesis Framework for Reversible Quantum-Flux-Parametron Logic Circuits," TCAD, 2025.

Characteristics of RQFP Logic – Buffer and Splitter

However, we found that no matter what inverter configuration an RQFP logic gate has, it cannot function as a 1-to-3 RQFP splitter with logical reversibility.

• Only 1-to-2 RQFP splitters can be used to implement multiple fan-outs, where each splitter introduces one additional garbage output.

To reduce the number of extra outputs caused by the insertion of RQFP splitters, a chained RQFP splitter tree structure is constructed as $1 \rightarrow x$

 s_1 , s_2 , and s_3 have the same inverter configuration $R(1,1,x) = \{M(\overline{1},1,x), M(1,1,\overline{x}), M(1,\overline{1},x)\}$.

RQFP Logic Circuit Design

- To implement RQFP logic circuit design, we need to consider
 - functional equivalence by RQFP gates, (number of RQFPs, buffers, garbage outputs)
 - fan-out limitation by RQFP splitters, (number of RQFPs, garbage outputs)
 - clock synchronization by RQFP buffers. (number of buffers)

- RQFP gates and garbage outputs significantly impact the energy dissipation of RQFP logic circuits.
- Observe that the first two steps impact the number of RQFP logic gates and garbage outputs.
- Therefore, we need to combine the first two steps to achieve a better design of the RQFP logic circuit.

[ICCAD'23] Rongliang Fu, Olivia Chen, Nobuyuki Yoshikawa and Tsung-Yi Ho, "Exact Logic Synthesis for Reversible Quantum-Flux-Parametron Logic," ICCAD, pp. 1-9, 2023. [DAC'24] Rongliang Fu, Robert Wille and Tsung-Yi Ho, "RCGP: An Automatic Synthesis Framework for Reversible Quantum-Flux-Parametron Logic Circuits based on Efficient Cartesian Genetic Programming," DAC, pp. 1-6, 2024. [TCAD25] Rongliang Fu, Robert Wille, Nobuyuki Yoshikawa and Tsung-Yi Ho, "Efficient Cartesian Genetic Programming-based Automatic Synthesis Framework for Reversible Quantum-Flux-Parametron Logic Circuits," TCAD, 2025.

Automatic Synthesis of RQFP Circuits

1) Exact logic synthesis (ICCAD'23)

2) Efficient Cartesian Genetic Programming (DAC'24, TCAD24)

[ICCAD'23] Rongliang Fu, Olivia Chen, Nobuyuki Yoshikawa and Tsung-Yi Ho, "Exact Logic Synthesis for Reversible Quantum-Flux-Parametron Logic," ICCAD, pp. 1-9, 2023. [DAC'24] Rongliang Fu, Robert Wille and Tsung-Yi Ho, "RCGP: An Automatic Synthesis Framework for Reversible Quantum-Flux-Parametron Logic Circuits based on Efficient Cartesian Genetic Programming," DAC, pp. 1-6, 2024. [TCAD25] Rongliang Fu, Robert Wille, Nobuyuki Yoshikawa and Tsung-Yi Ho, "Efficient Cartesian Genetic Programming-based Automatic Synthesis Framework for Reversible Quantum-Flux-Parametron Logic Circuits based on Efficient Cartesian Genetic Programming," DAC, pp. 1-6, 2024.

Simple Logic Synthesis for RQFP Logic

n6 RQFP_NNN_PPN_PNP q1

(y0

- AOI/MIG-based logic synthesis 1)
- Convert AOI/MIG into RQFP (Transformation) 2)
- 3)**RQFP** splitter insertion
- **RQFP** buffer insertion 4`

RQFPs: 10, Garbage outputs: 10-

'P': Positive (0), 'N': Negative (1). For example, $M(\bar{a}, b, c) \Rightarrow$ NPP

Exact Logic Synthesis for RQFP Logic (ICCAD'23)

'P': Positive (0), 'N': Negative (1). For example, $M(\bar{a}, b, c) \Rightarrow$ NPP

Exact Logic Synthesis for RQFP Logic (ICCAD'23)

Exact logic synthesis is to explore the detailed realization of f_i , i.e.,

$$\forall \{x_1, \dots, x_n\}, f_i(x_1, \dots, x_n) \equiv o_i(x_1, \dots, x_n) \equiv circuit_i(x_1, \dots, x_n),$$

where $circuit_i$ is defined by solving the constructed SAT model to choose gate types and connections under given conditions, such as r gates and g garbage outputs.

Hence, the key to exact logic synthesis becomes how to effectively and efficiently formulate the **types** of gates and the **connections** between gates, primary inputs (PIs), and primary outputs (POs).

SAT Encoding for RQFP Logic

To realize the RQFP logic circuit with *m* functions $f_i(x_1, ..., x_n)$, $i \in [1, m]$ and *r* RQFP logic gates,

- Encoding for Variables
 - POs: $o_{i[t]}, i \in [1, m], t \in [1, 2^n]$
 - Constant TRUE: $x_{0(0)[t]}, t \in [1, 2^n]$. PIs: $x_{i(0)[t]}, i \in [1, n], t \in [1, 2^n]$
 - Gates' outputs: $x_{i(p)[t]}, i \in [n+1,n+r], p \in [1,3], t \in [1,2^n]$
 - Connections: $c_{i,j(p)}, i \in [n + 1, n + r + m], j \in [0, i), p \in [1,3]$

SAT Encoding for RQFP Logic

- Encoding for Gate Functions
 - $f_{i(p,j)}, p \in [1,3], j \in [1,3]$ indicates whether an inverter does not exist in front of the j^{th} input of the p^{th} majority in gate x_i .

Exact Logic Synthesis for RQFP Logic (ICCAD'23)

- Iteratively and incrementally constructs the SAT model.
 - First, increase gates to find a feasible solution.
 - Initial gate number $r = \left[\frac{\max(n,m)}{3}\right]$
 - Then, limit the number of garbage outputs.
 - Lower boundary $g \ge \max(0, n m)$
 - Finally, insert RQFP buffers.

3 q = -14 sol \leftarrow Solver() 5 create variables for PIs, POs, constant true, r gates, and connections. 6 create clauses for function constraints. 7 sol.push() // create a snapshot 8 while true do if q < 0 then create clauses for fan-out constraints and POs' fan-in constraints. 10 sol.push() // create a snapshot 11 else 12 create clauses for garbage output constraints. 13 if sol.check() == SAT then 14 create RQFP logic circuit cir by sol.model(). 15 calculate the garbage number q_c of cir. 16 if $q_c < q_{lb}$ then 17 break 18 19 else $q = q_{c} - 1$ 20 sol.pop() // remove all clauses added after the last snapshot 21 else 22 if $q \ge 0 \land q \le g_{lb}$ then 23 24 break else if q > 0 then 25 q = 126 sol.pop() // remove all clauses added after the last snapshot 27 else 28 sol.pop(2) // remove all clauses added after the penultimate snapshot 29 r += 1 // new a RQFP logic gate 30 create variables for new gate x_{n+r} . 31 create clauses for constraints of x_{n+r} . 32 sol.push() // create a snapshot 33 34 insert RQFP buffers for cir

Cartesian Genetic Programming-based Synthesis for RQFP Logic (DAC'24, TCAD25)

Since exact logic synthesis is time consuming,

we propose **RCGP**, an efficient Cartesian Genetic Programming (CGP)^[31]-based flow, to generate large RQFP logic circuits.

[31] Miller, J.F. "Cartesian genetic programming: its status and future," Genet Program Evolvable, pp. 129–168, 2020.

[32] G. Meuli et al., "Majority-based Design Flow for AQFP Superconducting Family," DATE, 34–39, 2022.

[DAC'24] Rongliang Fu, Robert Wille and Tsung-Yi Ho, "RCGP: An Automatic Synthesis Framework for Reversible Quantum-Flux-Parametron Logic Circuits based on Efficient Cartesian Genetic Programming," DAC, pp. 1-6, 2024. [TCAD25] Rongliang Fu, Robert Wille, Nobuyuki Yoshikawa and Tsung-Yi Ho, "Efficient Cartesian Genetic Programming-based Automatic Synthesis Framework for Reversible Quantum-Flux-Parametron Logic Circuits," TCAD, 2025.

Why use CGP?

- Its encoding features on directed graphs can present the topology of RQFP circuits.
 - RQFPs have three inputs and three distinct outputs
 - Current circuit representation structures, such as AOI and MIG, cannot be applied in RQFP circuit design.
- Its evolutionary process can handle the fan-out limitation problem.
 - The introduction of RQFP splitters for the fan-out limitation in an RQFP circuit causes many garbage outputs.
 - Current logic optimization methods, such as rewriting and resubstitution, cannot handle the fan-out limitation well.

1-bit full adder

Efficient Cartesian Genetic Programming (CGP)

- CGP is an increasingly popular and efficient form of Genetic Programming.
 - Suitable for a program in the form of a directed graph.
 - The genotype in CGP is represented as a string of fixed-length integers, as follows:

Efficient Cartesian Genetic Programming (CGP)

• Initialization

Experimental results

- Device: Intel(R) Xeon(R) CPU E5-2630 v2 @ 2.60GHz and 256.0 GB memory.
- Baseline: Exact logic synthesis with Z3^[33]. Initialization: MIG-based logic optimization^[32].
- Benchmark: RevLib benchmark circuits^[34] and reversible reciprocal circuits^[35].

	Oı	rigina	al	Simple					Exact logic synthesis (ICCAD'23)						RCGP (DAC'24, TCAD)					
Testcase	PI I	PO]	RQFP	Buffer	JJ	Depth Ga	rbage	RQFP	Buffer J	JJ	Depth Gar	bage	runtime	RQFP	Buffer	JJ	Depth Ga	ir bage	runtime
1-bit full adder	3	2	1	8	7	220	5	10	3	3	84	3	3	14.51	3	3	84	3	3	113.04
4gt10	4	1	3	3	3	84	3	6	3	3	84	3	6	18.44	3	3	84	3	6	98.36
alu	5	1	4	14	17	404	6	17	4	61	120	4	5	96.16	4	6	120	4	5	134.47
c17	5	2	3	13	12	360	5	17				\			7	20	248	6	6	221.84
decoder $_2_4$	2	4	0	10	5	260	4	10	3	5	92	3	1	10.22	3	3	84	3	1	128.46
decoder_3_8	3	8	0	29	33	828	8	31	7	25 2	268	7	1	93237.87	7	16	232	5	1	264.68
graycode4	4	4	0	18	13	484	5	22				\			6	4	160	4	2	216.86
ham3	3	3	0	23	23	644	7	24	5	3 1	132	5	1	192.7	5	3	132	5	1	233.13
mux4	6	1	5	13	14	368	6	16				\			6	3	156	4	7	200.55
4_49_7	4	4	0	48	103	1564	11	42				\			24	45	756	9	13	707.07
graycode6_11	6	6	0	30	17	788	5	36				\			11	17	332	6	3	333.25
mod5adder_66	6	6	0	202	1242	9816	34	195				\			101	288	3576	16	61	3267.38
hwb8_64	8	8	0	2129	40254	212112	128	2037				\			2027	10602	91056	39	1818	96009.00
intdiv4	4	4	0	36	35	1044	9	37				\			14	18	408	6	9	685.99
intdiv5	5	5	0	71	140	2264	13	73				\			37	79	1204	10	22	1071.14
intdiv6	6	6	0	154	538	5848	21	152				\			73	184	2488	14	45	2354.22
intdiv7	7	7	0	293	1947	14820	37	282				\			140	511	5404	18	86	4945.98
intdiv8	8	8	0	562	5701	36292	59	554				\			293	1459	12868	25	187	10554.15
intdiv9	9	9	0	1054	13670	79976	78	1024				λ			507	1920	19848	24	380	22717.25
intdiv10	10	10	0	1815	32275	172660	115	1784				١			4119	5972	50744	33	960	100127.44

\' represents that the exact logic synthesis method cannot find a feasible solution within 240000 seconds.

[34] R. Wille, D. Große, L. Teuber, G. W. Dueck, and R. Drechsler, "RevLib: An online resource for reversible functions and reversible circuits," ISMVL, pp. 220–225, 2008.

[35] Soeken et al., "Design automation and design space exploration for quantum computers", 2017.

Conclusion and Future Work

Conclusions

- Introduced energy-efficient superconducting circuits.
- Presented our automation design flow of AQFP circuits.
- Presented our automatic synthesis methods for RQFP circuits.

[ICCAD'21] C. -Y. Huang, Y. -C. Chang, M. -J. Tsai and T. -Y. Ho, "An Optimal Algorithm for Splitter and Buffer Insertion in Adiabatic Quantum-Flux-Parametron Circuits," ICCAD, 2021.
[ASPDAC'23] Rongliang Fu, Mengmeng Wang, Yirong Kan, Nobuyuki Yoshikawa, Tsung-Yi Ho, and Olivia Chen, "A Global Optimization Algorithm for Buffer and Splitter Insertion in Adiabatic Quantum-Flux-Parametron Circuits," ASPDAC, 2023.
[DATE'23] Rongliang Fu, Junying Huang, Mengmeng Wang, Yoshikawa Nobuyuki, Bei Yu, Tsung-Yi Ho, and Olivia Chen, "BOMIG: A Majority Logic Synthesis Framework for AQFP Logic," DATE, 2023.
[TCAD] Rongliang Fu, Mengmeng Wang, Yirong Kan, Olivia Chen, Nobuyuki Yoshikawa, Bei Yu, Tsung-Yi Ho, "Buffer and Splitter Insertion for Adiabatic Quantum-Flux-Parametron Circuits," TCAD, 2024.
[ICCAD'23] Rongliang Fu, Olivia Chen, Nobuyuki Yoshikawa and Tsung-Yi Ho, "Exact Logic Synthesis for Reversible Quantum-Flux-Parametron Logic," ICCAD, pp. 1-9, 2023.
[DAC'24] Rongliang Fu, Robert Wille and Tsung-Yi Ho, "RCGP: An Automatic Synthesis Framework for Reversible Quantum-Flux-Parametron Logic Circuits based on Efficient Cartesian Genetic Programming," DAC, pp. 1-6, 2024.
[TCAD25] Rongliang Fu, Robert Wille, Nobuyuki Yoshikawa and Tsung-Yi Ho, "Efficient Cartesian Genetic Programming-based Automatic Synthesis Framework for Reversible Quantum-Flux-Parametron Logic Circuits," TCAD, 2025.

Challenges in RQFP Logic – Physical Design

- Lack of physical design tools specifically for RQFP circuits.
 - Complex clock network.
 - Strict timing and wirelength constraints.

Thank you for your attention! Q&A

Tsung-Yi Ho