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● Structural Sparsity 
○ Pruning of needless weights

■ In typical image networks >70% with 
negligible loss

● Activation Sparsity 
○ No relevant data results in 0-valued activations.

■ RELU activation function: ~50% of 
activations are 0-valued 

○ More, if trained for activation suppression!

● Temporal Sparsity
○ Little change from instant to instant

■ why re-process the whole image?
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Neural network Sparsity
Full frame

Difference consecutive frames
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Fewer activations result in less compute load 
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Introduction: Sparse Computing
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● Event-based: only propagates changes;
● Difference calculation

○ Computes difference
○ Integrates output

● Requires resilient neuron state;
○ used to cost a lot of memory (5x)
○ we reduced to 1.2x (new result) 

● Threshold: per neuron, how much change 
is needed to warrant propagation.

Red = active links and 
activated neurons
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Exploiting temporal sparsity
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● Sparsity reduces regularity in compute demand:
○ Breaks sequential memory access
○ Sporadic activity, non-deterministic;

● Exploiting activation sparsity means skipping 
activations:
○ Input stationary execution (next slide)

● Temporal sparsity needs resilient neuron state
○ Storing state frame to frame

● Training will have a major impact on 
performance.
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Consequences of Activation Sparsity 
for Computer Architecture
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Standard 
Convolution 
(output centric)

Event-driven 
Convolution
(input centric)
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Convolution Execution Order
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Event-driven vs standard convolution with sparsity

                                                                     Alpha: logic energy/memory energy
     Beta: nop logic energy/avg logic energy

Event-driven has more mem accesses, but much lower energy with sparsity!
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Out of the 
boxSTAR

So where are we?

● STAR: training for 
activation suppression 
helps a lot!

● Assumes FP16 datapath 
for input stationary; FP8 
for output stationary;

● Temporal is just too 
expensive: 5x more 
memory required!!!
○ Same problem as 

neuromorphic 
computing!

Temp
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● Weight pruning lowers number of computations and memory requirements 
○ Enables larger networks
○ Small power reduction due to loading fewer weights.

● Weight quantization sames as Weight Pruning.

● Activation suppression yields large energy and performance benefits
○ Event-driven: suppressed event means skipping all computation for that event…
○ Particularly efficient with RELU activation

■  2x event reduction out of the box
○ 2x  with training to increase activation sparsity

● Temporal sparsity 
○ More Activation Suppression, 
○ Costs memory for storing inter-frame states (out of the box ~5x for mobile CNNs)

■  >2x energy and performance gains possible on top of activation sparsity
● Depends on input data dynamicity
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Impact of Training on Performance
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Zoomed-in view

Event-Driven Neural Network Accelerator– GrAI-VIP
● 12-nm tapped-out chip  
● 144 SIMD-4 cores @ 650MHz
● 12x12 grid of event-driven cores
● 256 KB on-chip memory per core 
● FP16 algebra, with floating weight quantization at 

8, 4, 2b 
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Brain-Inspired Neural Processor on the Edge (GrAI-VIP)
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● Homogeneous array;
● Local memories per core:

○ Local weight and neuron state storage;
○ Near memory computation;

● Packet-switched NoC, with torus topology;
● Sparse computation, event-driven schedule: 

○ Avoids bulk data movement;
○ In-place state updates;

● Dataflow: input data arrival triggers execution
● No (fast) external memory interface
● GrAICore 4.2: 12x12 cores
● GrAI 4.2: 

○ FP16 2xSIMD-4 datapath
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NeuronFlow Array



MEET
Towards MEmory-Efficient Temporal Deep Neural Networks
(Accepted at CVPR’25)
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Problem:
● Neuronflow can execute Temporal Neural Networks (TNNs), to exploit temporal redundancy 
● Results in  dramatic reduction in computation: 2.5x to >10x;
● But the high memory cost of TNNs (5x) remains - needs to store full feature maps. 

○ This prevents TNNs from meeting the on-chip memory constraints. 

 Idea: 
Reduce state memory costs by increasing weight memory costs.  

MEET:Towards MEmory-Efficient Temporal Neural Networks
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 Automatically find a good network for your dataset. 
● Move from network-centric to data-centric 

specification 
 NAS for event-based processors 

● Add processor/mapping KPIs to evaluation.

● Redesign NNs to fit our hardware.

Network Architecture Search 



Snap Inc. ©2024 - All rights reserved                                          Orlando Moreira, Snap Inc. - NeuronFlow: An Architecture for Edge AI
                                                       

1
5 15

A-> W trade off done by Neural Architecture Search (NAS)

MEET:Towards MEmory-Efficient Temporal Neural Networks

NAS

Method Overview: Experimental Results: 

Conclusion: 

● External memory cost negates  energy 
savings from sparse compute.

● MEET significantly reduces memory cost  
wrt SOTA TNNs while maintaining accuracy 
and efficiency.
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Out of the 
boxSTARMEET

So where are we now?

● MEET: “cheap” temporal 
sparsity requires NAS

● Assumes FP16 datapath 
for input stationary; FP8 
for output stationary;
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● Event based processors exploit sparsity to reduce load
○ low latency (~1ms), very low power (<100mW  @60 fps).
○ event-based convolutions efficiently exploit activation sparsity

● Optimization training is essential
○ ~ 2x performance boost for simple activation sparsity
○ > 2.5x - 5x for temporal sparsity 

● Popular networks are not designed for event based processors
○ What if we design networks for event based processors?

■ MEET applies NAS to reduce penalties of temporal execution
■ From 5x Mem to 1.2x Mem!!
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Conclusions
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Thank you!
omoreira@snap.com


