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Neural network Sparsity Full frame

e Structural Sparsity
o Pruning of needless weights
m In typical image networks >70% with
negligible loss

e Activation Sparsity
o No relevant data results in 0-valued activations.
m RELU activation function: ~50% of _ .
activations are O-valued Difference consecutive frames

o More, if trained for activation suppression!

e Temporal Sparsity
o Little change from instant to instant
m why re-process the whole image?

X1
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Introduction: Sparse Computing

Process Prediction
everything CPUs

Redundant

Dog
Inefficient
Process only . g
Prediction -
non-zeros GrAl-VIP

Low Low latency

Dog power i

Fewer activations result in less compute load
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Exploiting temporal sparsity

Red = active links and
activated neurons
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Event-based: only propagates changes;
Difference calculation
o Computes difference
o Integrates output
Requires resilient neuron state;
o used to cost a lot of memory (5x)
o we reduced to 1.2x (new result)

Threshold: per neuron, how much change
is needed to warrant propagation.
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Consequences of Activation Sparsity
for Computer Architecture

e Sparsity reduces regularity in compute demand:
o Breaks sequential memory access
o Sporadic activity, non-deterministic;
e EXxploiting activation sparsity means skipping
activations:
o Input stationary execution (next slide)
e Temporal sparsity needs resilient neuron state
o Storing state frame to frame
e Training will have a major impact on
performance.

Feature maps

Convolutions Subsampling Convolutions Subsampling Fully connected
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Convolution Execution Order

Standard Event-driven

Convolution Convolution
(output centric) (input centric)
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Event-driven vs standard convolution with sparsity
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Alpha: logic energy/memory energy
Beta: nop logic energy/avg logic energy

Event-driven has more mem accesses, but much lower energy with sparsity!
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Out of the
box
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0.4 0.6
Event density (ED)

1.0

So where are we?

STAR: training for

activation suppression

helps a lot!

Assumes FP16 datapath

for input stationary; FP8

for output stationary;

Temporal is just too

expensive: 5x more

memory required!!!

o Same problem as

neuromorphic
computing!
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Impact of Training on Performance

Weight pruning lowers number of computations and memory requirements
o Enables larger networks
o Small power reduction due to loading fewer weights.

Weight quantization sames as Weight Pruning.

Activation suppression yields large energy and performance benefits
o Event-driven: suppressed event means skipping all computation for that event...
o Particularly efficient with RELU activation
m 2x event reduction out of the box
o 2x with training to increase activation sparsity

Temporal sparsity
o More Activation Suppression,
o Costs memory for storing inter-frame states (out of the box ~5x for mobile CNNs)
m >2x energy and performance gains possible on top of activation sparsity
e Depends on input data dynamicity
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Brain-Inspired Neural Processor on the Edge (GrAI-VIP)

GrAICore

Dual CPU NeuronFlow enabled

Pre and post
processing including
DSP extensions

Zoomed-in view

EVENT : ©, EVENT © . EVENT : ., EVENT )
,,,,, : ... .| Decode - - | Execute - - | Generate - i . .-

Event FIFO Decoder - ALU : Event

Event-Driven Neural Network Accelerator— GrAl-VIP

e 12-nm tapped-out chip
e 144 SIMD-4 cores @ 650MHz
famane Tntanfandd e 12x12 grid of event-driven cores
Camera Lntertaces 256 KB hi
High-speed access to o on-cnip rpemory per C(?re ) )
cameras High-speed access to mics, e FP16 algebra, with floating weight quantization at
speakers and host systems 8. 4.2b
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NeuronFlow Array

e Homogeneous array;
e Local memories per core:
o Local weight and neuron state storage;
o Near memory computation;
e Packet-switched NoC, with torus topology;
e Sparse computation, event-driven schedule:
o Avoids bulk data movement;
o In-place state updates;
Dataflow: input data arrival triggers execution
No (fast) external memory interface
GrAlCore 4.2: 12x12 cores
GrAl 4.2:
o FP16 2xSIMD-4 datapath
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MEET

Towards MEmory-Efficient Temporal Deep Neural Networks
(Accepted at CVPR’25)
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8! MEET:Towards MEmory-Efficient Temporal Neural Networks

Problem:

e Neuronflow can execute Temporal Neural Networks (TNNs), to exploit temporal redundancy
® Results in dramatic reduction in computation: 2.5x to >10x;
e But the high memory cost of TNNs (5x) remains - needs to store full feature maps.

O  This prevents TNNs from meeting the on-chip memory constraints.

@ Idea:

Reduce state memory costs by increasing weight memory costs.

EfficientNetLite2 (mem: 69 MB, static cycles: 218 M acc: 86.40%) B MEET-Full (mem: 34 MB, static cycles: 742M, acc: 86.39%)
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Network Architecture Search

Pick Architecture
. . From Search Space
Automatically find a good network for your dataset.
. . Search Search Performace
« Move from network-centric to data-centric G| | e

specification
NAS for event-based processors

« Add processor/mapping KPIs to evaluation.
« Redesign NNs to fit our hardware.

Return Performance
Estimate

Number Filter Filter Stride Stride
*\ |of Filters|, | Height [+ | Width [\ [ Height [+ | Width

Number Filter
\ |of Filters|, | Height [\

Layer N-1 Layer N Layer N+1
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MEET:Towards MEmory-Efficient Temporal Neural Networks

Method Overview:

50
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Conclusion:
o External memory cost negates energy
savings from sparse compute.
e MEET significantly reduces memory cost

weight (easy to compress) ® state (hard to compress)

wrt SOTA TNNs while maintaining accuracy

and efficiency.
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Experimental Results:
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MEET | STAR | Outofthe
box
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Conclusions

e Event based processors exploit sparsity to reduce load
o low latency (~1ms), very low power (<100mW @60 fps).
o event-based convolutions efficiently exploit activation sparsity
e Optimization training is essential
o ~ 2x performance boost for simple activation sparsity
o > 2.5x - 5x for temporal sparsity
e Popular networks are not designed for event based processors
o What if we design networks for event based processors?
m MEET applies NAS to reduce penalties of temporal execution
m From 5x Mem to 1.2x Mem!!
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Thank you!
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omoreira@snap.com
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