

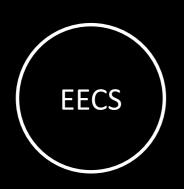
Next Generation Chip Designers Why, What and How

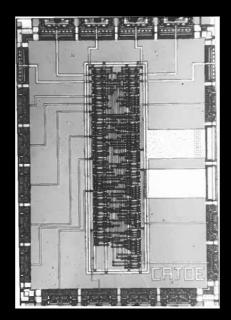
Jan Madsen, Professor, DTU Compute MPSoC'24 Megéve, France

DTU Compute

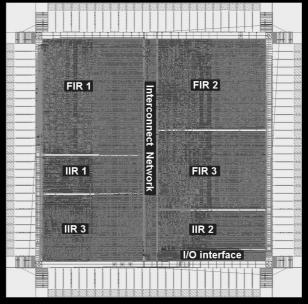
1

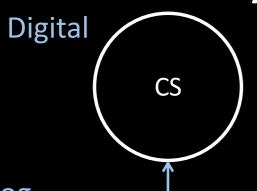
Why



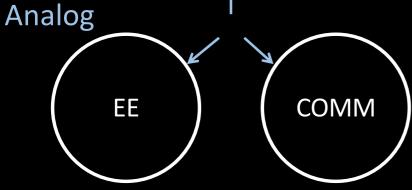

Chip Acts – US, EU, Japan

Chips Acts and initiatives, have similar targets


- Research and innovation in the design and manufacturing of advanced chips
- Increasing chip manufacturing capabilities and capacity
- Semiconductor supply chain monitoring, security, and resilience
- Education, skills, and workforce development.

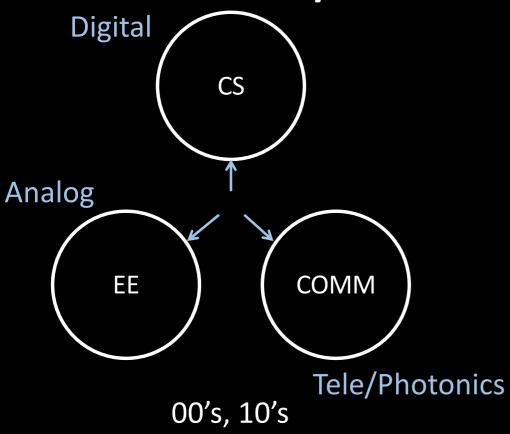

1989 EDA-based chip

1999 multicore chip

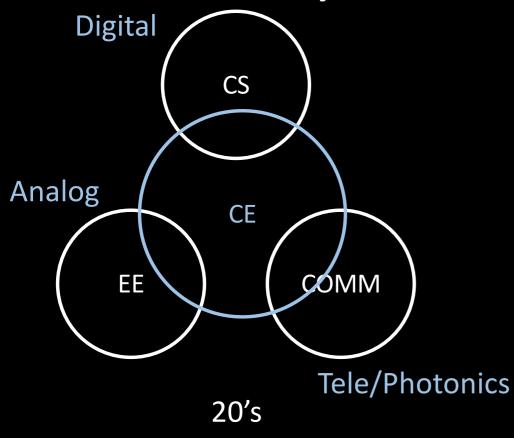

80's, 90's

MSc chip design specialisation

 Digital systems design, advanced computer architecture, VLSI design, test of digital systems, verification of digital systems


00's, 10's

2012 NOC-based chip Oticon


Tele/Photonics

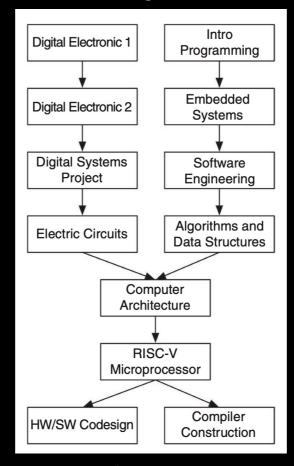
Industry	Company	Digital	Analog	FPGA/ASIC/ IP
Network / Communication	Comcores	Х		IP
	Microchip	Х		ASIC
	Napatech	Х		FPGA
	Nvidia	Х	Х	ASIC
	Zeuxion			IP
Audio / Hearing	Demant	Х	Х	ASIC
	GN	Х	Х	ASIC
	Infineon	Х	х	ASIC
	Knowles	Х	х	ASIC
	WSA	Х	Х	ASIC
EDA / Consultancy	Cadence	Х	Х	ASIC
	Synopsys	Х	Х	ASIC/FPGA
	SyoSil	Х		ASIC
	Skycore		Х	ASIC
	Presto	Х	Х	ASIC

Industry	Company	Digital	Analog	FPGA/ASIC/ IP
Network / Communication	Comcores	Х		IP
	Microchip	Х		ASIC
	Napatech	Х		FPGA
	Nvidia	Х	Х	ASIC
	Zeuxion			IP
Audio / Hearing	Demant	Х	Х	ASIC
	GN	Х	Х	ASIC
	Infineon	Х	Х	ASIC
	Knowles	Х	Х	ASIC
	WSA	Х	Х	ASIC
EDA / Consultancy	Cadence	Х	Х	ASIC
	Synopsys	Х	Х	ASIC/FPGA
	SyoSil	Х		ASIC
	Skycore		Х	ASIC
	Presto	Х	Х	ASIC

What

BSc in Computer Engineering

- Three specializations:
 - Chip design: with focus on digital hardware design, computer architecture, and chip technology.
 - Embedded systems: with focus on microcontroller programming, real-time systems, and resource constraint computing.
 - Computer systems: with focus on high-performance, parallel, and distributed systems.



CE: Philosophy

- Balance theory and practice
- Open source tools
 - Chisel (HDL)
 - RISC-V
- Agile hardware development
- Design and verification
- Al as a driver Embedded/Edge Al

CE: Chip design

How

Computer Engineering Education

2022

Marilyn Wolf[®], University of Nebraska-Lincoln

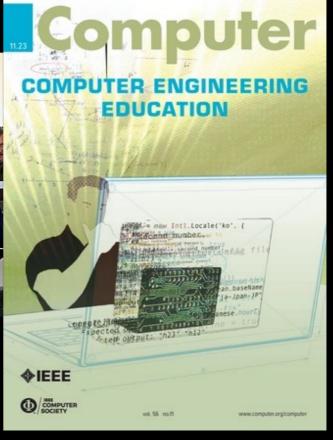
Computer engineering is a rapidly evolving discipline. How should we teach it to our students?

his virtual roundtable on computer engineering education was conducted in summer 2022 over a combination of email and virtual meetings. The panel considered what topics are of importance to the computer engineering curriculum, what

GREG BYRD: Computer engineering equals the design and analysis of computing hardware and software, both individually and as components in a system.

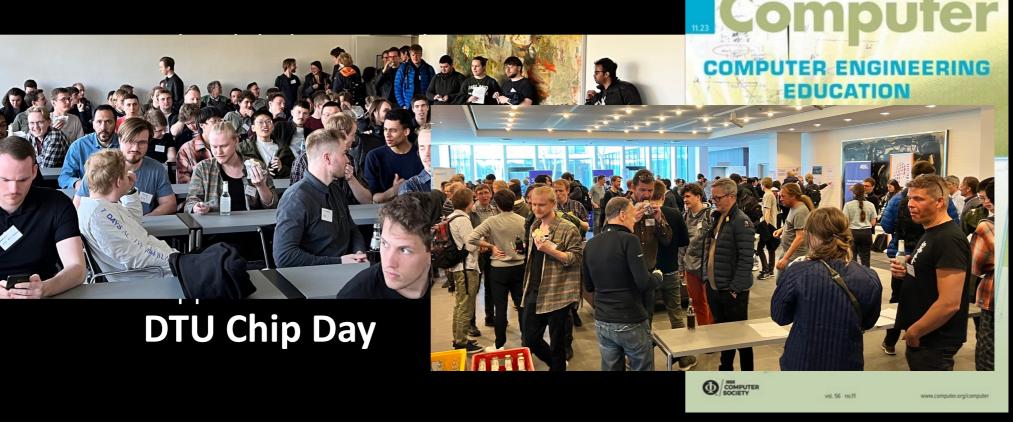
ROBERT DICK: Yeah. It necessarily spans algorithms and physical implementation substrates. As for

another possible definition, just the facts: design, analysis, and implementation of computer systems Where it's going: creating easy-to-use computer systems that help people by automating mundane tasks, organizing and sharing information, connecting them



Computer Engineering Education

2023

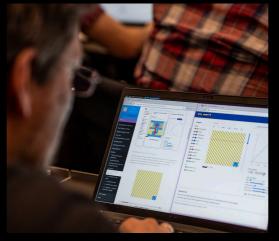


DTU Chip Day

Computer Engineering Education

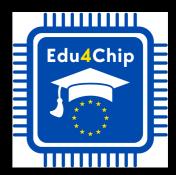
DTU Compute

MPSoC'25 Megeve, France



Chip Design Workshop – Tiny Tapeout

- 80 participants, 40 chip designs submitted for fabrication
- DTU Chip Group (Compute, Electro and Space)
- Edu4Chip Summer school
- Chip design camps and workshops for High School students
- Newly funded Chip JU research projects
- New courses in chip design addressing the open-source toolchain and agile development



™ The Edu4Chip Project

- EU-funded project
- Aims:
 - Improve our MSc education in chip design
 - Harmonize chip design education between universities
 - Supports building of new courses (4 new courses within the project)
- DTU + SyoSil, TUM, TAU, KTH, IMT, MINRES, Logicqworks, Fraunhofer
- Edu4Chip summer schools on Chip Design
 - 1st one at DTU this August: 260 applied for around 50 positions
 - 2026 in IMT (France), 2027 in TAU (Finland)

Summary

- The industry needs about 20 chip design engineers each year
- We have a strong education in (digital) chip design
 - New BSc in Computer Engineering
 - Enhanced digital design specialization with Edu4Chip
- Research is on architecture, not on (backend) chip design
- We are pushing for EC projects in Chips JU
 - Two starting (Rigoletto and NeAlxt), one submitted

Thank you