OpenFPGA: Bringing Open-source Hardware to FPGAs *Pierre-Emmanuel Gaillardon*

Department of Electrical and Computer Engineering University of Utah

Hawai'i Scientific Data Workshop 06/18/2025

Why OpenFPGA?

- FPGAs are an attractive solution for *flexibly* deploying domain acceleration to modern workloads on both data centers and edge targets
- Domain-specific applications demand a specific type of computing resources of FPGA
 - Al applications are typically DSP-hungry
 - Commercial FPGAs could be sub-optimal since they are tailored for generic applications

Designing FPGA fabrics is traditionally a cumbersome process

The OpenFPGA Framework – In a nutshell

Unified code base for fabric generation, design verification and end-user bitstream generation

@ LIGFU _ LNIS 2025 All right

(1) Architecture modelling with OpenFPGA

Designers can customize any circuit element at any location of FPGA fabric

University of Utah | P.-E. Gaillardon | 4

© Lloft I – I NIS 2025 All rights reserved

(2) Customizable Design Verification

Random vector testbench generation

- XOR outputs generated from user design and FPGA Fabric
- Optionally executes the configuration phase
- Flags all unmatched output

Pre-Configured fabric verification

- Generates pre-configured FPGA fabric
- Generate 1:1 wrapper to represent user design IOs
- Can be used with user design testbench

Formal Verification

- Generates pre-configured FPGA fabric with design wrapper
- Can be used with formal verification tools (such as formality) to perform faster formal verification

@ Lloft1 - I NIS 2025 All rights roses

(3) Bitstream Generation Features

- Generates the bitstream compatible with the selected configuration protocol
- Generates the unencrypted bitstream files in various formats, like .bit/.txt/.xml for different use case (like bitstream manipulation)

Human readable bitstream format

<instance level="0" name="fpga_top"/>
<instance level="1" name="grid_clb_1_1"/>
<instance level="2" name="logical_tile_clb_mode
<instance level="3" name="logical_tile_clb_mode
<instance level="4" name="logical_tile_clb_mode
<instance level="5" name="logical_tile_clb_mode
<instance level="6" name="lut4_config_latch_mem
</hierarchy>

<bitstream>

<bit memory_port="mem_out[0]" value="0"/>
<bit memory_port="mem_out[1]" value="0"/>
<bit memory_port="mem_out[2]" value="0"/>
<bit memory_port="mem_out[3]" value="0"/>
<bit memory_port="mem_out[4]" value="0"/>
<bit memory_port="mem_out[6]" value="0"/>

<bit memory_port="mem_out[6]" value="0"/>

<bit memory_port="mem_out[6]" value="0"/>

THE WINERSTRY OF LIVE

(4) OpenFPGA-Physical: XML-to-GDS flow

- Physical design most critical part of entire FPGA fabric design flow
- Standard hierarchical ASIC toolchain flow can not exploit the regularity and results in long implementation runtime

How does OpenFPGA address physical design challenges?

- 1. Relies on semi-custom design flows
- 2. Tileable architecture to limit the variation across the fabric
- 3. Priorities regularity for lower runtime and faster signoff
- 4. Scaling homogeneous designs to heterogeneous architectures
- 5. Post module P&R optimization
- 6. Feed throughs and buffer insertion to perform global optimization

@ Liofit - INIS 2025 All rights room

Top-level LEGO assembly of FPGA fabric

- 1. Similar type of blocks used in each scaled version of the fabric
- 2. The idea can scale a homogeneous design to heterogenous fabric

@ Lloft L NIS 2025 All right

Focus on the Hyper-Regularity

- An auto shaping is performed based on few key parameters like utilization of each unique module
- A regular power grid **scales gracefully** with the size of the FPGA

 SB_0_2
 CX_1_2
 SB_1_2

 CY_0_0
 LB_1_2
 CY_1_0

 SB_0_1
 CX_1_4
 SB_1_1

 SB_0_1
 CX_1_4
 SB_1_1

 SB_0_1
 CX_1_4
 SB_1_1

 SB_0_1
 CX_1_4
 SB_1_1

 SB_0_0
 CX_1_6
 SB_1_0

Regular Power Distribution

Auto Shaping Parameters

THE WATERSTTY OF UT

Global Hierarchical FPGA Clock Tree Synthesis

- Multi-level clock connectivity to allow flexible buffering
- The pre-routed buffers are scaled after the top-level place and route to optimize latency and skew of the entire design

Level 1

Sam	dava	voo vss	GPIO9		3PI011 DReset		DVSS
VSS SB_0	D_4 CX_1	4 SB_1_4	CX_2_4 S	B_2_4 CX_3	_4 SB_3_4	CX_4_4	SB_4_4 DVSS
vss dy_0		4 CY_1_4	LB_2_4 C	Y_2_4 LB_3	_4 CY_3_4	LB_4_4	
^{iest_er})_3 CX		GX 2_3 5	B_2_3 CX		GX 4_3	SB_4_B cff_tai SPI01z
GPIO1 CY_C	jβ LB <u>A</u>	.3 dY .3	LB_2_3 C	Y_2_B LB	_3 q y _3_3	LB_4_3	CY_4_3 SPIO1
GPIO2	D_2 CX_1	_2 SB_1_2	CX_2_2 S	B_2_2 CX_3	2 SB_3_2	CX_4_2	SB_4_2 SPI014
Reset			X III	B 2 1 CX		X 1	c_head
	л цв		LB ² 1 C	Y 2 1 LB	1 97 3 1	LB X 1	OVDD
VSS	D_0 [CX_1]	0 SB_1_0	CX_2_0 S	B_2_0 CX_3	_0 SB_3_0	CX_4_0	VSS SB_4_D VDD
į	VOD VSS	day Ss	GPIO4	GPIO6	se_tall GPI07	SSA DQA	SSA

Van Ginneken Buffer sizing with Pareto Pruning Strategy

• 100K+ LUTs design achievable in <24hours

Decign	Opt. Hier. (<i>ρs</i>)			
Design	Latency	Skew		
2×2	134	10.11		
4×4	304	12.45		
8×8	437	15.4		
16×16	2658	19.87		
32×32	4566	32.2		
64×64	8954	50.5		
128×128	21012	70.56		

Scaled FPGA Design and Clock Timing

@ Liofit - I NIS 2025 All rights rosor

OpenFPGA is Silicon Proven!

FROG – First Reconfigurable Opensource Gate array

12nm GlobalFoundries *Effort 2.5 person.month*

Cin

Cout

I-LUT

-LU1

in5 in4

in0 in1 in2 in3

in0 in1 in2 in3

Test en

SCout REGout

Test er

SOFA – Skywater Open-source FpgA

Integration to Caravel SoC 130nm Skywater Effort 1 person.month

Beyond the Academic Tool

The backbone of QuickLogic's Australis® eFPGA IP generator

eFPGA - IP Generator

INTEGRATE

🔷 australis

DEFIN

GENERATE

The backbone of efabless's CLEAR

open-source eFPGA SoC platform

Efabless' CLEAR, a Fully-Open RISC-V ASIC Built on chipIgnite, Nears its Goal with Days to Go

The enabler for the FPGA chips in Google-Skywater MPW shuttle

OpenFPGA Github: <u>https://github.com/lnis-uofu/OpenFPGA</u> OpenFPGA Documentation: <u>https://openfpga.readthedocs.io/en/master/</u>

QuickLogic

@ Liofit - I NIS 2025 All rights recorded

Summary

PEN FPGA

OpenFPGA is a *leading open-source FPGA IP generator*

- Support highly customizable FPGA architecture design
- Provide most complete open-source EDA support
- Enable 24-hour development cycle to prototype FPGAs
- Enabled 20+ FPGA tape-outs in the past 4 years

Detailed Documentation and Development setup

OpenFPGA Github: <u>https://github.com/Inis-uofu/OpenFPGA</u>

Thank you for your attention

Questions?

Laboratory for NanoIntegrated Systems Department of Electrical and Computer Engineering SMBB building – University of Utah – Salt Lake City – UT – USA