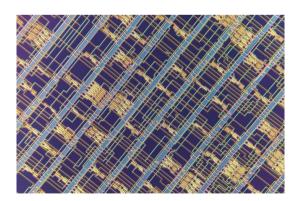
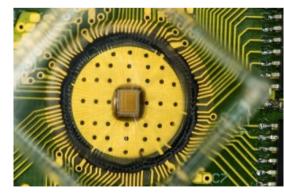
Digital design: challenges and solutions

Giovanni De Micheli


The challenge for this decade and beyond

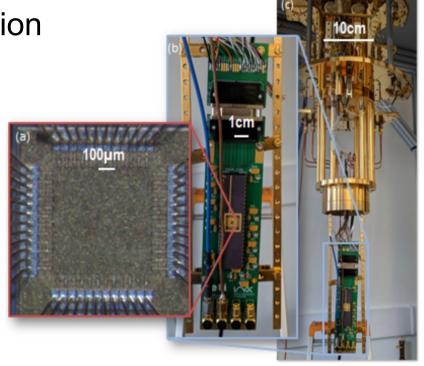
- The market is driven by AI/ML applications:
 - Large storage space
 - Large amount of energy for computation
- How do we rethink architectures, circuits and devices?
 - To enable edge devices to use AI/ML
 - To curb the energy consumption
- Human/planetary dimension of AI/ML
 - Ethical questions



Where is the technological space for growth?

- Growing computing and storage needs
 - Data Centers account 50GW in 2025 with 15% yearly growth
- Skyrocketing costs of sub-nano fabrication
 - TSMC's three fabs in Arizona budgeted at 65 B USD
- Diversity
 - A plurality of technologies may be combined to accelerate computation

[Shulaker, MIT 2021]


[Boybat, IBM 2020] (c) Giovanni De Micheli

[Ramey, Hot Chips, 2020]

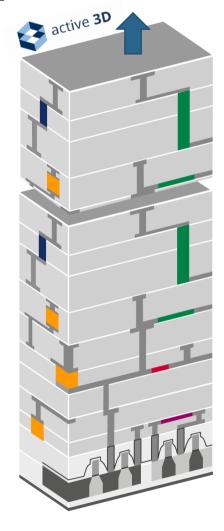
There is plenty of space at the bottom

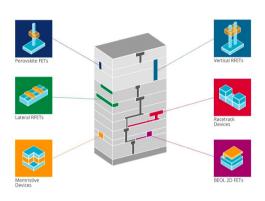
- Quantum computing accelerates computation
 - In some restricted but relevant domains
- Error tolerance and corrections
 - Evolution from NIQC to FTQC
- QC will be provided as a service
 - Will QC reach the the workplace, home, edge?

[Source: LETI]

Quantum computing

- Two facets of quantum engineering:
- The physical world
 - Using matter to compute with superposition and entanglement
- The computational world
 - Designing and compiling algorithms into quantum circuits
- EDA can be instrumental for R&D in both domains
 - Advanced physical design and quantum compilation

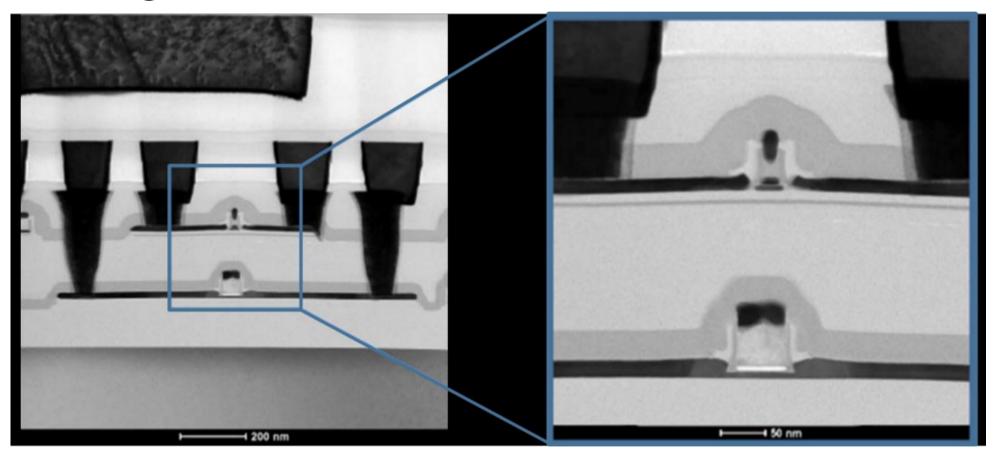

[P. Picasso]


There is plenty of space at the top

ABEOL Active 3D

active FEOL, active BEOL

- Devices integrated into volume BEOL
- Scalable approach by adding additional layers
- Can be combined with different base technologies



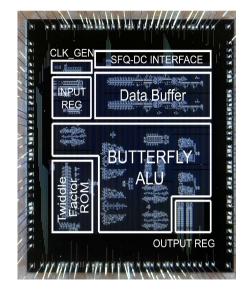
[TU Dresden and RWTH Aachen]

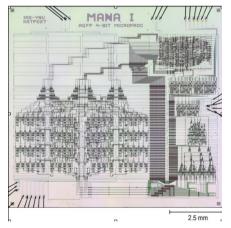
(c) Giovanni De Micheli

3D Integration

(c) Giovanni De Micheli

[Batude at al., VLSI 2011]


Chiplets


[Intel, 2022]

There is plenty of space in the cold

- Superconducting electronics
 - No parasitic resistance at low temperature (4K)
 - Information by *quantized pulses* $\int V(t)dt = \varphi_0 = h/2e = 2.07 \text{ my ps}$
- Design features
 - Classic computing paradigm with deep pipelined logic
 - Many variants including adiabatic operation

7 GHz SFQ FFT Processor [Ke et al., 2021]

GHz 4-bit RISC [Ayala et a2.5l.,2021]

Superconducting electronics

Logic	Clock Freq. [GHz]	$E_bit/I_c\Phi_0$	Typical I _c [mA]	EDP [aJ·ps]	
CMOS	4	-	-	~105	
RSFQ [1]	50	19	150	120	
eSFQ [2]	20	0.8	150	12	← Single-flux
RQL [3]	10	0.33	150	10	
LV-RSFQ [4]	20	3.5	150	54	l
AQFP [5]	5	0.0083	50	0.086	← Adiabatic
Quantum limit	-	-	-	5.3×10^{-5}	

^[1] X. Peng et al., IEICE Trans. Electron. **E97.C**, 188 (2014).

(c) Giovanni De Micheli

^[2] M. H. Volkmann et al., Supercond. Sci. Technol. 26, 015002 (2013).

^[3] Q. P. Herr et al., J. Appl. Phys. 109, 103903 (2011).

^[4] M. Tanaka et al., IEEE Trans. Appl. Supercond. 23, 1701104 (2013).

^[5] N. Takeuchi et al., Supercond. Sci. Technol. 28, 015003 (2015).

Superconducting electronics

Support for ultra fast acceleration

General purpose accelerators but also for AI/ML

Low power operation

Limited by cooling technology

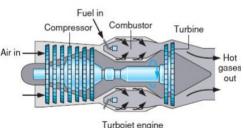
Bridge to Quantum Computing processors

Intermediate temperature range

Need for new EDA tools

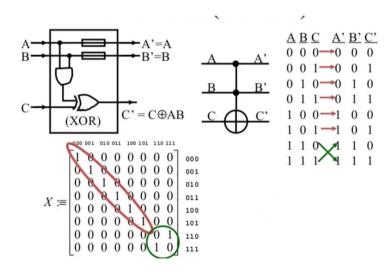
Activities in China, Japan and USA

X

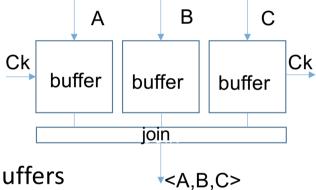

There is not much space in the hot!

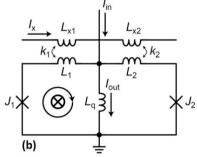
- Thermodynamics of computing systems is the limiting factor
 - Reduce/recycle energy cost and heat dissipation of computation
 - Current roadblock for AI/ML and data centers
- The search for energy-efficient computing systems may involve:
 - Reversible and/or adiabatic computation
- Computing systems are still very low in terms of efficiency
 - Heat and CO₂ generation per computational task

Thermodynamics of computing

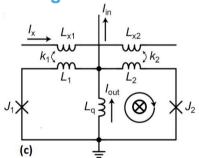

- Reversible logic
 - A reversible process is more efficient than an irreversible one (Carnot's Theorem)
 - Quantum computing leverages reversible processes
 - Reversible computing also in CMOS [Varie 2025]
- Adiabatic logic
 - An adiabatic process has no heat exchange with the exterior
 - Adiabatic computing in CMOS:
 - Charge/discharge capacitors over a small △V
 - Adiabatic computing in SCE
 - Charge/discharge inductors ove a small △I

Example: reversible logic gates


- Toffoli gate (QC)
 - Permutation


- Vaire computing (CMOS)
 - Reversible adder embeded in LC resonator
 - Adder is C; Sine-wave supply
- Energy recovery
 - Adiabatic operation

Example: Superconducting AQFP circuits


- Adiabatic Quantum Flux Parametron [Takeuchi 13]
- Very small dynamic power consumption
- Majority-based logic
 - Free inversion
- Clocked logic
 - Clock at ≈5 GHz
 - Path balancing using clocked buffers

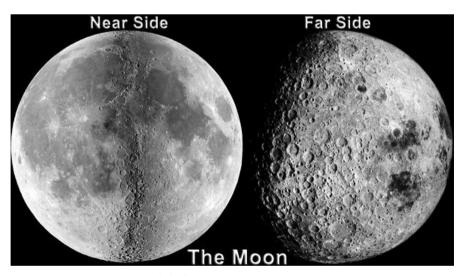
Logic state '0'

Summary: Diversity of Architectures and Devices

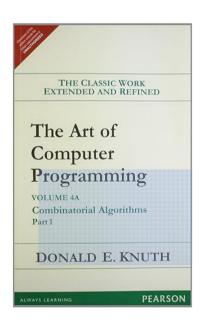
- The competitive advantage of emerging technologies:
 - Adapting computational model to computational fabric
- Application-specific accelerators are best examples
 - Very desirable for both cloud and edge systems
- What is the effort to achieve successful diversity?
 - New computational thinking models
 - Adapting/creating EDA tools and flows

EDA for emerging technologies and paradigms

There's still tomorrow for Logic Synthesis

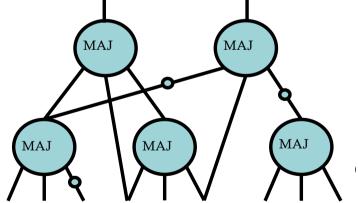


(c) Giovanni De Micheli

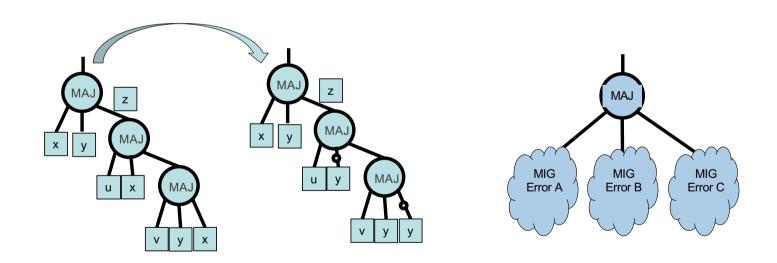

[P. Cortellesi 2023 Film]

There's still tomorrow for Logic Synthesis

- The main fabrics of most chips is a network of gates
- We know a lot about logic networks and synthesis
- But there is more that we don't know than we know
 - Is that relevant?


(c) Giovanni De Micheli

Majority logic synthesis


- Majority logic axioms
 - Sound and complete
 - Reachability property

[Amaru et al., DAC 14, TCAD18]

Algorithms for MIG optimization

- Optimization algorithms for area and delay
 - Algebraic methods based on rewriting
 - Boolean methods exploiting don't cares

(c) Giovanni De Micheli

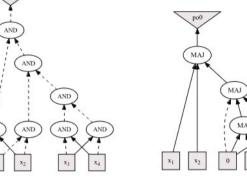
Algorithms for MIG optimization

Majority-based algorithms:

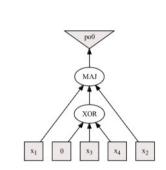
improve commercial and academic logic synthesis for **CMOS** 15-20% delay reduction as compared to earlier methods


are very successful for many emerging technologies, like:

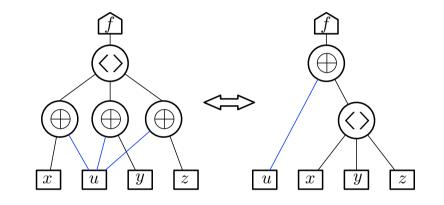
superconducting electronics optical/wave based computing logic in memory

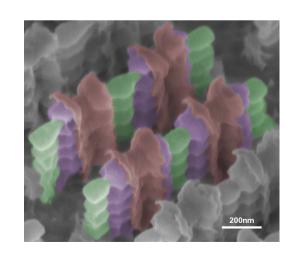

The role of linearity

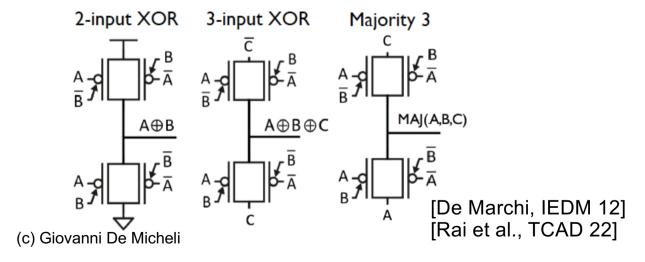
AIG


XMG

- MAJority-Inverter logic as well
- EXOR are linear operators
 - EXOR play a leading role in realizing adders and multipliers
 - Adders require at least one AND gate per bit
- It is useful to decompose functions into linear and non-linear parts

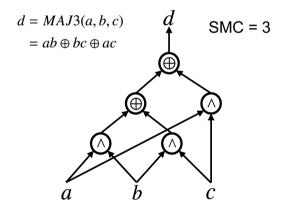


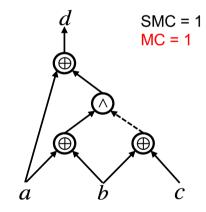

MIG



XMGs – Controlled-polarity transistors

- XOR MAJority graph
 - Extension of MIGs (replace INVerter by XOR)
 - Self-duality of XORs (odd) and Majority
- XOR can flow through MAJ nodes
- Data structure for controlled-polarity gates


The role of multiplicative complexity


- Network model: XOR-AND graph
 - Abstraction of arithmetic addition and multiplication
 - Separate linear from non-linear component
- Multiplicative complexity (MC) is the minimum #AND to realize a function
 - Intractable problem
 - MC is known for functions with up to 6 inputs
- Multiplicative depth (MD) is the longest path of AND gates

Multiplicative complexity

- The structural MC (#ANDs) is an upper bound to MC
- Example
 - Majority-3

a	b	С	d = MAJ3(a, b, c)
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

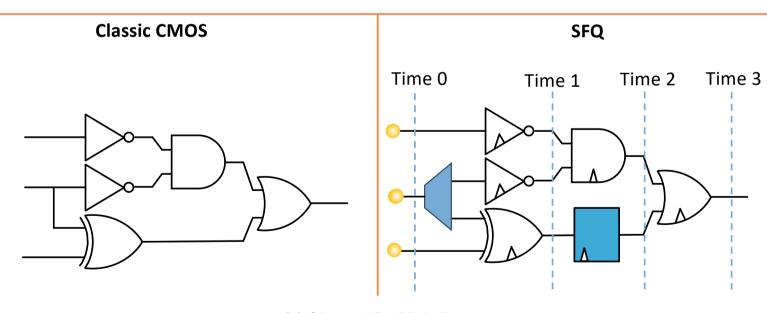
[Ç. Çalık, 2019]

Using multiplicative complexity and depth

- Some problems in logic design, quantum compilation and security can be reduced to MC minimization
 - Synthesis of circuits robust to Side-channel Attacks [Testa 2019]
 - Minimizing T-Cells in Quantum Compilation [Meuli, Nature QI, 2022]
 - Reducing cost of implementing and executing Garbled Circuits [Yu, 2023]
 - Improving efficiency of computation with Fully Homomorphic Encryption
- Efficient logic synthesis algorithms for MC reduction
 - MC is invariant over affine transformations
 - Various heuristic methods

Fully Homomorphic Encription (FHE)

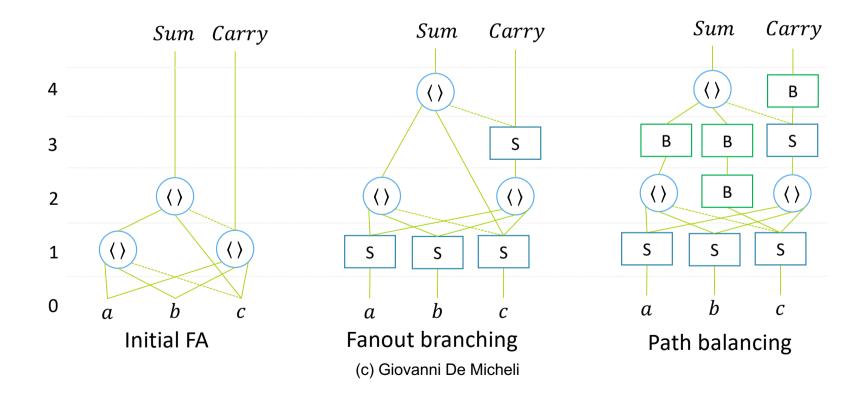
- Compute functions using encrypted data
 - Speed of computation is essential
- Apply logic synthesis to restructure computation
 - While keeping noise under a threshold level
- Key metrics:
 - Multiplicative complexity multipliers generate noise
 - Multiplicative depth critical path
- Approaches:
 - MC-aware MD optimization (MC * MD²)
 - ESOP balancing [Haner et al., TQC 22]



Pipelining in new logic synthesis paradigms

- Leveled FHE circuits
 - FHE operations amplify noise (especially multipliers)
 - Above a certain noise level, data cannot be reconstructed
 - Bootstrapping is used to recondition data
- Bootstrapping has a cost and needs to be distributed in the circuit
 - Leveled FHE circuits are reminiscent of pipelined logic
 - Retiming-like techniques can be used to best place bootstraps

Pipelining SCE circuits


- SCE circuits are pipelined at the gate level (gates are clocked)
- The entire circuit need to be *balanced* (correct input when gate execute)
- Limited gate driving capability requires splitter insertion

(c) Giovanni De Micheli

Balancing and splitting in AQFP

- Splitters are clocked
 - Balancing and splitting are interdependent

The elephant in the technology room

- What is the role of AI/ML?
- Applicable almost everywhere!
- Design space exploration mainly

(c) Giovanni De Micheli

Summary: EDA is the enabler of future computing

- AI/ML applications require design of novel architectures by EDA tools
- EDA theory and practice enambels new technologies
- Synthesis allows designers to reach multiple goals beyond PPA
- Verification is essential, especially in view of new modeling methods

Conclusions

- Efficient computing needs a match between architecture and technology
 - Accelerators will exploit the diversity of materials and circuits
- Logic modeling and reasoning is a fundamental tool
 - Algorithms for diverse design may leverage a wealth of techniques
- Chip design is entering a new exciting epoch
 - To sustain the fast evolution of algorithms, software and services

Thank You

SYNOPSYS®

