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Hardware acceleration for 
high parallelism and energy efficiency
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How to perform hardware design?

… circuit design is often considered a “black art”, restricted to 
only those with years of training in electrical engineering… 

[cacm.acm.org/magazines/2023/1/]

… chips take years to design, resulting in the need to speculate 
about how to optimize the next generation of chips… 

[ai.googleblog.com/2020/04]
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High-Level Synthesis: From Programs to Circuits

Raise the level of abstraction for hardware design 
beyond RTL level (VHDL, Verilog)
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High-Level Synthesis: From Programs to Circuits

A completely new type of users for HLS!

Software application programmers
A completely new type of applications for HLS!

General-purpose code
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Bridging the Gap Between Software and Hardware

How to make hardware design 
accessible to non-experts?

SW

HW

George et al. FPL 2014.

Unoptimized software program, execution time = 27,236 clock cycles

Optimized software program, execution time = 302 clock cycles

High-level synthesis (HLS): from software descriptions to hardware design
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Bridging the Gap Between Software and Hardware

How to make hardware design 
accessible to non-experts?

How to automatically extract 
parallelism from software code?

SW

HW

for (i = 0; i < num_rows, i++) {
  tmp = 0; 
  s = row[i]; e = row[i+1];

  for (c = s; c < e; c++) {
    cid = col[c];
    tmp += val[c] * vec[cid];
  }

  out[i] = tmp;
}

Variable loop bounds

Irregular memory 
access patterns

Variable memory latency

Typical software features prevent hardware parallelism

Sparse-matrix dense-vector multiplication (SpMV)
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Bridging the Gap Between Software and Hardware

How to make hardware design 
accessible to non-experts?

How to automatically extract 
parallelism from software code?

How to avoid hardware-level 
functional verification?

SW

HW

Functional verification of circuits using hardware simulation 
→ inefficient, limited, non-exhaustive

Covers some behaviors
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Bridging the Gap Between Software and Hardware

How to make hardware design 
accessible to non-experts?

How to automatically extract 
parallelism from software code?

How to avoid hardware-level 
functional verification?

How to understand and account for 
hardware implementation details?

SW

HW
Langhammer et al. ARITH 2015.

FPGA technology mapping, placement, and routing
→ impact on circuit performance and power

A

B
A → B

B’

short & fast long & slow
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Bridging the Gap Between Software and Hardware

How to perform efficient 
HLS design space exploration?

How to make hardware design 
accessible to non-experts?

How to automatically extract 
parallelism from software code?

How to avoid hardware-level 
functional verification?

How to understand and account for 
hardware implementation details?

SW

HW
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Design Space Exploration for HLS

execution time = 27,236 clock cycles

execution time = 302 clock cycles

Execution time

C
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a

Large design space 
(e.g., this kernel → hundreds of points)

How to identify Pareto-optimal 
code configurations?
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Design Space Exploration for HLS

Slow 
(mins-hours) 

Difficult to 
analyze 

Fast (ms) and accurate ☺ 

Easy to analyze ☺

Circuit implementation is 
too expensive to use in DSE
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Design Space Exploration for HLS

How to quickly and accurately estimate 
the quality of results (QoR)?
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How to Go About QoR Estimation?

GNNs fully encode the program graph’s 
topological information

Sohrabizadeh, Bai, Sun, and Cong. Robust GNN-Based Representation Learning for HLS. ICCAD 2023.
Gao, Zhao, Lin, and Guo. Hierarchical Source-to-Post-Route QoR Prediction in High-Level Synthesis with GNNs. DATE 2024.
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How to Go About QoR Estimation?

Sohrabizadeh, Bai, Sun, and Cong. Robust GNN-Based Representation Learning for HLS. ICCAD 2023.
Gao, Zhao, Lin, and Guo. Hierarchical Source-to-Post-Route QoR Prediction in High-Level Synthesis with GNNs. DATE 2024.

Based on a standard compiler representation 
→ complex, redundant information
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“Wide” GNN (large receptive field):
poor scaling, limited cross-graph 

interactions, low accuracy
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Revisited estimation stack
• Local GNNs localize cross-graph interactions

• Hierarchical GNNs increase information density

A new HLS-tailored graph compiler
• HLS-specific, information-dense graph

Balor, our HLS QoR estimator, increases estimation 
accuracy and reduces computational cost

Murphy and Josipović. Balor: HLS Source Code Evaluator Based on Custom Graphs and Hierarchical GNNs. ICCAD 2024.

How to Go About QoR Estimation?
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Balor, our HLS QoR estimator, increases estimation 
accuracy and reduces computational cost

Murphy and Josipović. Balor: HLS Source Code Evaluator Based on Custom Graphs and Hierarchical GNNs. ICCAD 2024.

How to Go About QoR Estimation?

DB4HLS
LUT mean percentage error: 4%

Latency mean percentage error: 6% 

ML Contest for Chip Design with HLS 2024: 
1st place in QoR estimation 
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Graph Representation

• Graph representation directly obtained from compiler intermediate representation (IR)
– ProGraML, used by existing estimation approaches, builds graph directly from the LLVM IR

Cummins et. al. ProGraML: A Graph-based Program Representation for Data Flow Analysis and Compiler Optimizations. ICML 2021.
Sohrabizadeh, Bai, Sun, and Cong. Robust GNN-based representation learning for HLS. ICCAD 2023.

Gao, Zhao, Lin, and Guo. Hierarchical Source-to-Post-Route QoR Prediction in High-Level Synthesis with GNNs. DATE 2024.

ProGraML: 46 nodes, 
62 edges

Standard compiler representations 
are not intended for estimation tasks

Nodes irrelevant for HLS 
(e.g., memory allocation)

HW-relevant info missing 
(Local? Global? Memory 

interface?)

Large graph with long-range interactions
(e.g., loop iteration info distributed across the graph)
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GNNs and Cross-Graph Interactions

• Previously: long-range program graph interactions 
forced the use of large receptive fields
– Receptive field: a window into the graph
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GNNs and Cross-Graph Interactions

• Previously: long-range program graph interactions 
forced the use of large receptive fields
– Receptive field: a window into the graph

Receptive field radius = 1
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GNNs and Cross-Graph Interactions

• Previously: long-range program graph interactions 
forced the use of large receptive fields
– Receptive field: a window into the graph

Receptive field radius = 1
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GNNs and Cross-Graph Interactions

• Previously: long-range program graph interactions 
forced the use of large receptive fields
– Receptive field: a window into the graph

Receptive field radius = 1

Receptive field radius = 2

Receptive field radius = 3
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GNNs and Cross-Graph Interactions

• Previously: long-range program graph interactions 
forced the use of large receptive fields
– Receptive field: a window into the graph

• Problem 1: poor GNN scaling
– Large receptive fields cause redundant processing
– Redundant processing reduces estimation accuracy

Receptive field radius = 1

Receptive field radius = 2

Receptive field radius = 3
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GNNs and Cross-Graph Interactions

• Previously: long-range program graph interactions 
forced the use of large receptive fields
– Receptive field: a window into the graph

• Problem 1: poor GNN scaling
– Large receptive fields cause redundant processing
– Redundant processing reduces estimation accuracy

• Problem 2: the receptive field is not even
– Long-range interactions unevenly accounted for

Arrives early: high impact

Arrives late: low impact
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Receptive Field Size

Local GNN
(Small Receptive Field)

Long-range interactions:
Not accounted for during estimation

Low redundancy 
enables increased accuracy

Information Density: 
Small receptive field requires 
“information-dense” graphs

How to devise information-dense graphs 
suitable for local GNNs?

“Wide” GNN
(Large Receptive Field)

Long-range interactions: 
Unevenly accounted for during estimation 

due to late arrival

Poor GNN scaling 
causes strongly redundant computation

Information Density: 
No problems
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Revisited estimation stack
• Local GNNs localize cross-graph interactions

• Hierarchical GNNs increase information density

A new HLS-tailored graph compiler
• HLS-specific, information-dense graph

Balor, our HLS QoR estimator, increases estimation 
accuracy and reduces computational cost

Murphy and Josipović. Balor: HLS Source Code Evaluator Based on Custom Graphs and Hierarchical GNNs. ICCAD 2024.

How to Go About QoR Estimation?
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Balor’s Graph Compiler

1. Create node for each code statement
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Balor’s Graph Compiler

1. Create node for each code statement
2. Break nodes into indivisible hardware actions
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Balor’s Graph Compiler

1. Create node for each code statement
2. Break nodes into indivisible hardware actions
3. Label each node with data type
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Balor’s Graph Compiler

1. Create node for each code statement
2. Break nodes into indivisible hardware actions
3. Label each node with data type
4. Add variable declaration nodes & connect them to reads/writes
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Balor’s Graph Compiler

1. Create node for each code statement
2. Break nodes into indivisible hardware actions
3. Label each node with data type
4. Add variable declaration nodes & connect them to reads/writes
5. Add dataflow edges
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Balor’s Graph Compiler

BEFORE
ProGraML: 46 nodes, 62 edges

NOW
Balor: 13 nodes, 25 edges

Simplified, HLS-tailored graph
• Irrelevant SW information is omitted
• Relevant HW information is explicit
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Evaluation

• Architecture: GNN DSE
– The core of state-of-the-art architectures 

• Dataset: DB4HLS
– 36,296 data points, synthesized with Vitis HLS

– 29 Machsuite kernels

• Estimate:
– Latency (clock cycles)

– Clock period (ns)

– Resource usage (LUTs/FFs/BRAMs/DSPs)

Sohrabizadeh, Bai, Sun, and Cong. Automated Accelerator Optimization Aided by Graph Neural Networks. DAC 2022.
Ferretti,  Kwon,  Ansaloni,  Di Guglielmo, Carloni, and Pozzi. DB4HLS: A Database of High-Level Synthesis. ESL 2021

Execution time

C
ir

cu
it

 a
re

a Training & 
validation

Testing 
(estimation)
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Evaluation

• Architecture: GNN DSE
– The core of state-of-the-art architectures 

• Dataset: DB4HLS
– 36,296 data points, synthesized with Vitis HLS

– 29 Machsuite kernels

• Estimate:
– Latency (clock cycles)

– Clock period (ns)

– Resource usage (LUTs/FFs/BRAMs/DSPs)

• Percentage error:

Sohrabizadeh, Bai, Sun, and Cong. Automated Accelerator Optimization Aided by Graph Neural Networks. DAC 2022.
Ferretti,  Kwon,  Ansaloni,  Di Guglielmo, Carloni, and Pozzi. DB4HLS: A Database of High-Level Synthesis. ESL 2021

Example scatter plot, 5,673 test points
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Evaluation

Sohrabizadeh, Bai, Sun, and Cong. Automated Accelerator Optimization Aided by Graph Neural Networks. DAC 2022.

Information-dense, HLS-tailored graphs 
reduce both error and cost
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How to Go About QoR Estimation?

Revisited estimation stack
• Local GNNs localize cross-graph interactions

• Hierarchical GNNs increase information density

A new HLS-tailored graph compiler
• HLS-specific, information-dense graph

Balor, our QoR estimator, increases estimation 
accuracy and reduces computational cost

Murphy and Josipović. Balor: HLS Source Code Evaluator Based on Custom Graphs and Hierarchical GNNs. ICCAD 2024.
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Receptive Field Size

“Wide” GNN
(Large Receptive Field)

Local GNN
(Small Receptive Field)

Long-range interactions: 
Unevenly accounted for during estimation 

due to late arrival

Long-range interactions:
Not accounted for during estimation

Poor GNN scaling 
causes strongly redundant computation

Low redundancy 
enables increased accuracy

Information Density: 
No problems

Information Density: 
Small receptive field requires 
“information-dense” graphs

Are our custom graphs suitable for local GNNs?
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Cross-Graph Interactions: The Pragma Challenge

Sohrabizadeh, Bai, Sun, and Cong. Automated Accelerator Optimization Aided by Graph Neural Networks. DAC 2022.
Sohrabizadeh, Bai, Sun, and Cong. Robust GNN-Based Representation Learning for HLS. ICCAD 2023.

Prior philosophy (e.g., GNN-DSE and HARP): information has location 
→ pragma information isolated to single node

Pragma information propagates unevenly 
to affected nodes
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Cross-Graph Interactions: The Pragma Challenge

Sohrabizadeh, Bai, Sun, and Cong. Automated Accelerator Optimization Aided by Graph Neural Networks. DAC 2022.
Sohrabizadeh, Bai, Sun, and Cong. Robust GNN-Based Representation Learning for HLS. ICCAD 2023.

Our philosophy: locations have information
→ pragma information distributed to all affected nodes

Pragma information available everywhere where it matters
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Move to a Local Architecture

Sohrabizadeh, Bai, Sun, and Cong. Automated Accelerator Optimization Aided by Graph Neural Networks. DAC 2022.

Move to a strongly local architecture

GNN-DSE (DAC ‘22)
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Evaluation

Sohrabizadeh, Bai, Sun, and Cong. Automated Accelerator Optimization Aided by Graph Neural Networks. DAC 2022.

Local-focused approaches
reduce redundant processing
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How to Go About QoR Estimation?

Revisited estimation stack
• Local GNNs localize cross-graph interactions

• Hierarchical GNNs increase information density

A new HLS-tailored graph compiler
• HLS-specific, information-dense graph

Balor, our QoR estimator, increases estimation 
accuracy and reduces computational cost

Murphy and Josipović. Balor: HLS Source Code Evaluator Based on Custom Graphs and Hierarchical GNNs. ICCAD 2024.
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What are Hierarchical GNNs?

Flat GNNs use 1 network and 1 reduction:

Hierarchical GNNs use multiple networks and multiple reductions 
to increase information density:

How to cluster the graph to 
reduce its size? 
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How to Cluster?
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How to Cluster?

Good clusters already exist: 
basic blocks in the control-flow graph
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Hierarchical Architecture

Local-Focused Architecture:

Move to a hierarchical architecture:
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Evaluation

Sohrabizadeh, Bai, Sun, and Cong. Automated Accelerator Optimization Aided by Graph Neural Networks. DAC 2022.

Hierarchical GNNs
further reduce error at low cost
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1st Place at ML Contest for Chip Design with HLS

1. 1.26 → Balor
2. 1.72 (+37%)
3. 1.99 (+58%)

Murphy and Josipović. Balor: HLS Source Code Evaluator Based on Custom Graphs and Hierarchical GNNs. ICCAD 2024.
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Where Do We Go from Here?

• Balor: an HLS source code evaluator
– Information-dense, HLS-tailored graphs

– Local and hierarchical GNNs

– Increased estimation accuracy and reduced computational cost

Murphy and Josipović. Balor: HLS Source Code Evaluator Based on Custom Graphs and Hierarchical GNNs. ICCAD 2024.

How to generalize to different HLS 
tools, FPGAs, unseen kernels,…?

GNNs for accurate quality of results 
estimation directly from the source code
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Where Do We Go from Here?

• Balor: an HLS source code evaluator
– Information-dense, HLS-tailored graphs

– Local and hierarchical GNNs

– Increased estimation accuracy and reduced computational cost

Murphy and Josipović. Balor: HLS Source Code Evaluator Based on Custom Graphs and Hierarchical GNNs. ICCAD 2024.

How to generalize to different HLS 
tools, FPGAs, unseen kernels,…?

How to provide insights that guide 
design space exploration?

GNNs for accurate quality of results 
estimation directly from the source code
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Bridging the Gap Between Software and Hardware

GNNs for accurate quality of results estimation 
directly from the source code

How to make hardware design 
accessible to non-experts?

How to automatically extract 
parallelism from software code?

How to avoid hardware-level 
functional verification?

How to understand and account for 
hardware implementation details?

SW

HW

Murphy and Josipović. Balor: HLS Source Code Evaluator Based on Custom Graphs and Hierarchical GNNs. ICCAD 2024.
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Bridging the Gap Between Software and Hardware

SW

HW

How to understand and account for 
hardware implementation details?

How to avoid hardware-level 
functional verification?

How to automatically extract 
parallelism from software code?

How to make hardware design 
accessible to non-experts?

Irregular memory access patternsfor (i=0; i<N; i++) {
hist[x[i]] = hist[x[i]] + weight[i];

}

Dynamatic: an open-source HLS compiler that 
generates dynamically scheduled circuits from C/C++

Typical software features prevent hardware parallelism

Features of OoO superscalar 
processors (e.g., speculation)
→ up to 14.9X faster than 

Vivado HLS circuits

Josipović, Ghosal, and Ienne. Dynamically Scheduled High-Level Synthesis. FPGA 2018 Best Paper Award Nominee
Josipović, Sheikhha, Guerrieri, Ienne, and Cortadella. Buffer Placement and Sizing for High-Performance Dataflow Circuits. FPGA 2020 Best paper award
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Bridging the Gap Between Software and Hardware

How to understand and account for 
hardware implementation details?

How to avoid hardware-level 
functional verification?

How to automatically extract 
parallelism from software code?

How to make hardware design 
accessible to non-experts?

SW

HW

Xu, Murphy, Cortadella, and Josipović. Eliminating excessive dynamism of dataflow circuits using model checking. FPGA 2023.
Elakhras, Guerrieri, Erhart, Ienne, and Josipović. ElasticMiter: Formally Verified Dataflow Circuit Rewrites. ASPLOS 2025

Formal verification for HLS: prove HLS 
correctness and improve HLS-generated circuits

Functional verification of circuits using hardware simulation 
→ inefficient, limited, non-exhaustive

Customize circuit logic 
(50% area reduction)
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Bridging the Gap Between Software and Hardware
Standard pipelining (register placement) is unaware of circuit 

transformations during logic synthesis and technology mapping

How to understand and account for 
hardware implementation details?

How to avoid hardware-level 
functional verification?

How to automatically extract 
parallelism from software code?

How to make hardware design 
accessible to non-experts?

HW

SW

Rizzi, Guerrieri, and Josipović. An Iterative Method for Mapping-Aware Frequency Regulation in Dataflow Circuits. DAC 2023
Wang, Rizzi, and Josipović. MapBuf: Simultaneous Technology Mapping and Buffer Insertion for HLS Performance Optimization. ICCAD 2023 Best Paper Award Nominee

Total delay 
pre-synthesis = 3 ns
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Bridging the Gap Between Software and Hardware
Standard pipelining (register placement) is unaware of circuit 

transformations during logic synthesis and technology mapping

How to understand and account for 
hardware implementation details?

How to avoid hardware-level 
functional verification?

How to automatically extract 
parallelism from software code?

How to make hardware design 
accessible to non-experts?

HW

SW

Rizzi, Guerrieri, and Josipović. An Iterative Method for Mapping-Aware Frequency Regulation in Dataflow Circuits. DAC 2023
Wang, Rizzi, and Josipović. MapBuf: Simultaneous Technology Mapping and Buffer Insertion for HLS Performance Optimization. ICCAD 2023 Best Paper Award Nominee

Total delay 
post-place-and-route 

= 1 ns

LUT delay 
= 0.5 ns

LUT delay 
= 0.5 ns

Wire delay = 0 ns

Implementation-aware compiler optimizations 
for fast and small circuits
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Bridging the Gap Between Software and Hardware

How to understand and account for 
hardware implementation details?

How to avoid hardware-level 
functional verification?

How to automatically extract 
parallelism from software code?

How to make hardware design 
accessible to non-experts?

HW

SW

Guerrieri, Guha, Lavin, Hung, Josipović, and Ienne. DynaRapid: Fast-Tracking From C to Routed Circuits. FPL’24. Best Paper Award

LUT

FF

FF

LUT

FF

LUT

FF

LUT

FF

LUT FF

LUT

FF

LUT

FF

LUT

FF

LUT

FF

LUT

LUT

LUT
LUT

LUT

FF…
…

…
…

…

…

… …

…
… …

…

…
… …

…

…
… …

…

…

FF

…

To place: 151 LUTs, 124 FFs
To route: 1299 wires (bits)

Slow (mins-hours) 

do x++
    while (x<N)
return x

Merge

Buff

1

Branch

N

Fork

Add

Cmp

xstart

xend

FPGA implementation (synthesis, placement, and routing) is 
orders of magnitude slower than software compilation
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Bridging the Gap Between Software and Hardware

How to understand and account for 
hardware implementation details?

How to avoid hardware-level 
functional verification?

How to automatically extract 
parallelism from software code?

How to make hardware design 
accessible to non-experts?

HW

SW

Guerrieri, Guha, Lavin, Hung, Josipović, and Ienne. DynaRapid: Fast-Tracking From C to Routed Circuits. FPL’24. Best Paper Award

do x++
    while (x<N)
return x

Merge

Buff

1

Branch

N

Fork

Add

Cmp

xstart

xend

LUT

LUT

LUT

LUT

FF

LUT

FF

FF

LUT

FF

LUT

LUT LUT

FF
FF

LUT
LUT

LUT

LUT

LUT

LUT

LUT

LUT

xstart

xend

LUT

To place: 6 dataflow modules
To route: 306 wires (bits)

Fixed set of dataflow modules 
→ pre-implemented module library

Design-specific connections
→ place & route

Fast and modular 
P&R

FPGA implementation (synthesis, placement, and routing) is 
orders of magnitude slower than software compilation

20x implementation speedup ☺
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Bridging the Gap Between Software and Hardware

for (j = 0; j < 10; j++) {
   float x = 0.0;
   for (i = 0; i < 10; i++)
       x += data[i][j];
    mean[j] = x / float_n;
}

for (j = 0; j < 10; j++) {
   float x = 0.0;
   for (i = 0; i < 10; i++)
       x += (data[i][j] - mean[j]) *    
(data[i][j] - mean[j]);
   x /= float_n;
   x = x*x;
   stdev[j] = x;
}

Make hardware design
 broadly accessible, fast, and reliable
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DYNAMO: Digital Systems and Design Automation Group

Thanks! ☺ 

dynamo.ethz.ch github.com/ETHZ-DYNAMO/balor

Research group: Balor QoR estimator
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