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[ How to perform hardware design? ]

.. circuit design is often considered a “black art”, restricted to ... Chips take years to design, resulting in the need to speculate

only those with years of training in electrical engineering... about how to optimize the next generation of chips...
[cacm.acm.org/magazines/2023/1/] [ai.googleblog.com/2020/04]




High-Level Synthesis: From Programs to Circuits
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High-Level Synthesis: From Programs to Circuits
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! 4 A completely new type of users for HLS!

return

} | Software application programmers

A completely new type of applications for HLS!
. General-purpose code
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HW

Bridging the Gap Between Software and Hardware

How to make hardware design
accessible to non-experts?
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from software descriptions to hardware design

void (int+* mem) {
mem[512] = O;
for (int i=0; i<hk12; i++)
mem[512] += mem[i];

software program, execution time = 27,236 clock cycles

254

// Width of MPort = 16 * sizeof (int)
#define ChunkSize (sizeof (MPort) /sizeof (int))
#define LoopCount (512/ChunkSize)
// Maximize data width from memory
void (MPort* mem) {
// Use a local buffer and burst access
MPort buff [LoopCount];
memcpy (buff, mem, LoopCount);
// Use a local variable for accumulation
int sum=0;
for(int i1=1; i<LoopCount; i++){
// Use additional directives where useful
// e.g. pipeline and unroll for parallel exec.
#pragma PIPELINE
for (int j=0; Jj<ChunkSize; J++){
#pragma UNROLL
sumt= (int) (buff[i]>>j*sizeof (int)«8); }}
mem[512]=sum;

Optimized software program, execution time = 302 clock cycles
George et al. FPL 2014.
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HW

Bridging the Gap Between Software and Hardware

How to automatically extract
parallelism from software code?

Typical software features prevent hardware parallelism

for (i = @; i < num_rows, i++) {
tmp = 0O;
s = row[i]; e =|row[i+1];| Variable memory latency

Ifor (c = s; C < e; C++) {I Variable loop bounds
cid = colfc];
tmp += val[c] *Ivec[cid]j

}

Irregular memory
access patterns

out[i] = tmp;
}

Sparse-matrix dense-vector multiplication (SpMV)
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Bridging the Gap Between Software and Hardware

How to avoid hardware-level
functional verification?

Functional verification of circuits using hardware simulation
-2 inefficient, limited, non-exhaustive
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Functional verification
Covers some behaviors
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Bridging the Gap Between Software and Hardware

How to make hardware design
accessible to non-experts?

How to automatically extract
parallelism from software code?

How to avoid hardware-level
functional verification?

How to understand and account for
hardware implementation details?

FPGA technology mapping, placement, and routing
— impact on circuit performance and power

Switch Matrix

Interconnect Network

I/0 pins

short &

fast

long & slow

A->B

BI

Logic Block

Memory Block  DSP Block

Langhammer et al. ARITH 2015.
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Bridging the Gap Between Software and Hardware

How to make hardware design
accessible to non-experts?
How to automatically extract
parallelism from software code?

How to avoid hardware-level
functional verification?

How to understand and account for
hardware implementation details?

How to perform efficient
HLS design space exploration?




Design Space Exploration for HLS
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Execution time

Large design space
(e.g., this kernel = hundreds of points)

How to identify Pareto-optimal
code configurations?

void (int* mem) {
mem[512] = 0;
for(int i=0; 1<512; i++)
mem[512] += mem[i];

L Y

}

execution time = 27,236 clock cycles

S

// Width of MPort = 16 % sizeof (int)
#idefine ChunkSize (sizeof (MPort)/sizeof (int))
#define LoopCount (512/ChunkSize)
// Maximize data width from memory
void (MPort+ mem) {
// Use a local buffer and burst access
MPort buff[LoopCount];
memcpy (buff, mem, LoopCount);
// Use a local variable for accumulation
int sum=0;
for (int i=1; i<LoopCount; i++) {
// Use additional directives where useful
// e.qg. pipeline and unrcll for parallel exec.
#pragma PIPELINE
for(int j=0; j<ChunkSize; j++){
#pragma UNROLL
sumt= (int) (buff[i]>>j+sizeof (int)*8); }}
mem[512]=sum;
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execution time = 302 clock cycles




Design Space Exploration for HLS

Design Space Explorer Circut Implementation 5| Circuit implementation is
ow
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Real circuit quality | Difficult to
(area, perf., power) | analyze ®
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. Produce diagnostic Recommend Easy to analyze ©
Design Space Explorer P Optimization y Y

[ Inputs (code Choose Next
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Design Space Exploration for HLS

Design Space Exploreq ( Circut Implementation
Inputs (code Choose Next >/ | HLs | b logic N tech. N place &
configurations) Candidate J L’ synthesis mapping route
A
\ J
( Real circuit quality
L (area, perf., power)
/ Source Code Evaluator \
- .| |Produce diagnostic Recommend . .
Deston Space Exporer| | —R8 outputs ™1 | optimization How to quickly and accurately estimate
Inputs (code Choose Next the quality of results (QoR)?
configurations) Candidate | |Eestimate quality of
A 4 results
. J

Y

(Estimated circuit quality
L (area, perf., power)




How to Go About QoR Estimation?
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i Graph Graph Quality of Results
Code . Representation Embedding , Estimates

GNNs fully encode the program graph’s
topological information

Sohrabizadeh, Bai, Sun, and Cong. Robust GNN-Based Representation Learning for HLS. ICCAD 2023.

Gao, Zhao, Lin, and Guo. Hierarchical Source-to-Post-Route QoR Prediction in High-Level Synthesis with GNNs. DATE 2024.




How to Go About QoR Estimation?
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pipeline

Based on a standard compiler representation
- complex, redundant information

Sohrabizadeh, Bai, Sun, and Cong. Robust GNN-Based Representation Learning for HLS. ICCAD 2023.
Gao, Zhao, Lin, and Guo. Hierarchical Source-to-Post-Route QoR Prediction in High-Level Synthesis with GNNs. DATE 2024.




How to Go About QoR Estimation?
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Balor, our HLS QoR estimator, increases estimation
accuracy and reduces computational cost
A new HLS-tailored graph compiler Revisited estimation stack
e HLS-specific, information-dense graph * Local GNNs localize cross-graph interactions

* Hierarchical GNNs increase information density

Murphy and Josipovi¢. Balor: HLS Source Code Evaluator Based on Custom Graphs and Hierarchical GNNs. ICCAD 2024.




How to Go About QoR Estimation?
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Quality of Results
Estimates

Balor, our HLS QoR estimator, increases estimation
accuracy and reduces computational cost

DB4HLS
LUT mean percentage error: 4%
Latency mean percentage error: 6%

Murphy and Josipovié. Balor: HLS Source Code Evaluator Based on Custom Graphs and Hierarchical GNNs. ICCAD 2024.

ML Contest for Chip Design with HLS 2024:
1%t place in QoR estimation




Graph Representation

e Graph representation directly obtained from compiler intermediate representation (IR)
— ProGraML, used by existing estimation approaches, builds graph directly from the LLVM IR

Large graph with long-range interactions
(e.g., loop iteration info distributed across the graph)

void kernel(int a[1024]){
for(int i=0; i<1024; i++){

} N NN N kot AN 3 |
} 3 43 S A OGRS OR ORI S OO CI
N =

. W AR IR y -
O
f6d ~\
@Y ’ ProGraML: 46 nodes,

62 edges
Standard compiler representations

are not intended for estimation tasks

Nodes irrelevant for HLS HW-relevant info missing
(e.g., memory allocation) (Local? Global? Memory
interface?)

Cummins et. al. ProGraML: A Graph-based Program Representation for Data Flow Analysis and Compiler Optimizations. ICML 2021.
Sohrabizadeh, Bai, Sun, and Cong. Robust GNN-based representation learning for HLS. ICCAD 2023.
Gao, Zhao, Lin, and Guo. Hierarchical Source-to-Post-Route QoR Prediction in High-Level Synthesis with GNNs. DATE 2024.




GNNs and Cross-Graph Interactions

* Previously: long-range program graph interactions
forced the use of large receptive fields
— Receptive field: a window into the graph
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* Previously: long-range program graph interactions
forced the use of large receptive fields
— Receptive field: a window into the graph

. Receptive field radius =1
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GNNs and Cross-Graph Interactions

* Previously: long-range program graph interactions
forced the use of large receptive fields
— Receptive field: a window into the graph

. Receptive field radius =1
. Receptive field radius = 2

. Receptive field radius =3




GNNs and Cross-Graph Interactions

* Previously: long-range program graph interactions
forced the use of large receptive fields
— Receptive field: a window into the graph

* Problem 1: poor GNN scaling

— Large receptive fields cause redundant processing
— Redundant processing reduces estimation accuracy

. Receptive field radius =1
. Receptive field radius = 2

. Receptive field radius =3




GNNs and Cross-Graph Interactions

Previously: long-range program graph interactions
forced the use of large receptive fields
— Receptive field: a window into the graph

Problem 1: poor GNN scaling

— Large receptive fields cause redundant processing
— Redundant processing reduces estimation accuracy

Problem 2: the receptive field is not even
— Long-range interactions unevenly accounted for

. Arrives early: high impact

. Arrives late: low impact




Receptive Field Size

“Wide” GNN Local GNN
(Large Receptive Field) (Small Receptive Field)
Poor GNN scaling Low redundancy
causes strongly redundant computation enables increased accuracy
Long-range interactions: Long-range interactions:
Unevenly accounted for during estimation Not accounted for during estimation
due to late arrival
_ _ Information Density:
Information Density: Small receptive field requires
No problems “information-dense” graphs

How to devise information-dense graphs
suitable for local GNNs?




How to Go About QoR Estimation?
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Balor, our HLS QoR estimator, increases estimation
accuracy and reduces computational cost

A new HLS-tailored graph compiler Revisited
e HLS-specific, information-dense graph

* Local GNNs localize cross-graph interactions

* Hierarchical GNNs increase information density

Murphy and Josipovié. Balor: HLS Source Code Evaluator Based on Custom Graphs and Hierarchical GNNs. ICCAD 2024.




Balor’s Graph Compiler

void kernel(int a[1024]){ 1. Create node for each code statement

for(int i=0; [i<1024; i++){
a[i] *= 5;

}

i=0 |=P»| i<1024 }=—Pp| Branch

|

I Return I
" T -
|

N !

afi]*=5 p=p i++ -

s Program Order Edge

Variable Edge

—— Dataflow Edge




void kernel(int a[1024]){
for(int i=0; 1<1024;
a[i] *= 5;

}

i++){

Balor’s Graph Compiler

1. Create node for each code statement
2. Break nodes into indivisible hardware actions

s Program Order Edge

Variable Edge

Dataflow Edge




Balor’s Graph Compiler

void kernel(int a[1024]){
for(int i=0; i1<1024;
ali] *= 5;

}

i++)4

1. Create node for each code statement
2. Break nodes into indivisible hardware actions
3. Label each node with data type

Branch
void

Return
void
Read
i32

s Program Order Edge

Variable Edge

Dataflow Edge




void kernel(int a[1024]){
for(int i=0; i1<1024;
ali] *= 5;

}

i++)4

Balor’s Graph Compiler

1. Create node for each code statement
2. Break nodes into indivisible hardware actions
3. Label each node with data type

4. Add variable declaration nodes & connect them to reads/writes

Read
i32

Return
void
Branch
void

Read
i32 ' .
Param

i32[1024

7 Local

s Program Order Edge

Variable Edge

—— Dataflow Edge




void kernel(int a[1024]){
for(int i=0; i<1024; i++){
al[i] *= 5;

}

Balor’s Graph Compiler

1. Create node for each code statement
2. Break nodes into indivisible hardware actions
3. Label each node with data type

4. Add variable declaration nodes & connect them to reads/writes

5. Add dataflow edges

s Program Order Edge

Variable Edge

—— Dataflow Edge




Balor’s Graph Compiler

@
B

® BEFORE
> ProGraML: 46 nodes, 62 edges
................................ |
|
!
: NOwW
! Balor: 13 nodes, 25 edges

Read
P
Param
i32[1024

Simplified, HLS-tailored graph
* Irrelevant SW information is omitted
 Relevant HW information is explicit




Architecture: GNN DSE

Evaluation

— The core of state-of-the-art architectures

Dataset: DB4HLS

— 36,296 data points, synthesized with Vitis HLS

— 29 Machsuite kernels

Estimate:
— Latency (clock cycles)
— Clock period (ns)

Circuit area

— Resource usage (LUTs/FFs/BRAMs/DSPs)

Sohrabizadeh, Bai, Sun, and Cong. Automated Accelerator Optimization Aided by Graph Neural Networks. DAC 2022.
Ferretti, Kwon, Ansaloni, Di Guglielmo, Carloni, and Pozzi. DB4HLS: A Database of High-Level Synthesis. ESL 2021

Pareto / @)
Optimal
Frontier

Execution time

Training &
validation

Testing
(estimation)




Evaluation

Architecture: GNN DSE

— The core of state-of-the-art architectures
Real FFs vs. Inferred FFs

Dataset: DB4HLS — -_‘;;;g X
— 36,296 data points, synthesized with Vitis HLS . -
— 29 Machsuite kernels »

. & 15000 1
Estimate:
‘€ 10000 A
— Latency (clock cycles)
— Clock period (ns) ol
— Resource usage (LUTs/FFs/BRAMs/DSPs) 0-
(') SOIOO 10(I)00 15600 20(')00 25600
Percentage error: Real FFs

Example scatter plot, 5,673 test points
abs(Real Value — Inferred Value) P P P

Real Value

* 100

Sohrabizadeh, Bai, Sun, and Cong. Automated Accelerator Optimization Aided by Graph Neural Networks. DAC 2022.
Ferretti, Kwon, Ansaloni, Di Guglielmo, Carloni, and Pozzi. DB4HLS: A Database of High-Level Synthesis. ESL 2021




Normalized Values

o
o

1.0

o
o

o
o
1

0.2 1

0.0 -

Evaluation

Mean Percentage Estimation Error, Mean Multiplications for Inference,
Normalized to GNN-DSE (DAC '22) Normalized to GNN-DSE (DAC '22)
et Lof====777- — — GNN-DSE
B Balor's Graph Compiler
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LUTS FFs BRAMs DSPs Latency Clock Period Mults

Information-dense, HLS-tailored graphs
reduce both error and cost

Sohrabizadeh, Bai, Sun, and Cong. Automated Accelerator Optimization Aided by Graph Neural Networks. DAC 2022.




How to Go About QoR Estimation?
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N~ — — — / |\ | _ _I
Graph Graph Quality of Results
. Representation Embedding Estimates
Balor, our QoR estimator, increases estimation
accuracy and reduces computational cost
A new Revisited estimation stack
e HLS-specific, information-dense graph * _Local GNNs localize cross-graph interactions

* Hierarchical GNNs increase information density

Murphy and Josipovié. Balor: HLS Source Code Evaluator Based on Custom Graphs and Hierarchical GNNs. ICCAD 2024.



Receptive Field Size

“Wide” GNN Local GNN
(Large Receptive Field) (Small Receptive Field)
Poor GNN scaling Low redundancy
causes strongly redundant computation enables increased accuracy
Long-range interactions: Long-range interactions:
Unevenly accounted for during estimation Not accounted for during estimation
due to late arrival
_ _ Information Density:
Information Density: Small receptive field requires
No problems “information-dense” graphs

Are our custom graphs suitable for local GNNs?




Cross-Graph Interactions: The Pragma Challenge

void kernel(int a[1024]){ Prior philosophy (e.g., GNN-DSE and HARP): information has location

for(int i=0; i<1024; i++){ . . . .
#pragna HLS pipeline — pragma information isolated to single node

a[i] *= 5; - -
} ' Pragma information propagates unevenly
to affected nodes

i32[1024]

7 Scalar N\
W

Pipelined
a

s Program Order Edge

Variable Edge

— Dataflow Edge

Sohrabizadeh, Bai, Sun, and Cong. Automated Accelerator Optimization Aided by Graph Neural Networks. DAC 2022.
Sohrabizadeh, Bai, Sun, and Cong. Robust GNN-Based Representation Learning for HLS. ICCAD 2023.




Cross-Graph Interactions: The Pragma Challenge

void kernel(int al[1024]){ Our philosophy: locations have information

for(int 1=0; 1<1024; %H){ - pragma information distributed to all affected nodes
#pragma HLS pipeline

ali] *= 5;
} [ Pragma information available everywhere where it matters ]

Read
Pipelined
i32

Branch
Pipelined

Read

Pipelined Pipelined Pipelined Pipelined
32 ‘ 32 ‘ 32 ‘ 32

i32[1024]
a

" Scalar
w

Mul Write Add
Pipelined

i32

Write
Pipelined
i32

s Program Order Edge

Variable Edge

— Dataflow Edge

Sohrabizadeh, Bai, Sun, and Cong. Automated Accelerator Optimization Aided by Graph Neural Networks. DAC 2022.
Sohrabizadeh, Bai, Sun, and Cong. Robust GNN-Based Representation Learning for HLS. ICCAD 2023.




Move to a Local Architecture

GNN-DSE (DAC 22)

GNN Decoders

-0~ 00~ - 00-0-69-B -2

Vs

Move to a strongly local architecture

|

D-0-0-0-B |- [0

GNN Decoders

(

=

Message-Passing Layer

[
A
=

Jumping Knowledge Network

Residual Block

Feedforward Neural Network

@E@

Basic Block Aggregator
@ Graph Aggregator

\

~

Sohrabizadeh, Bai, Sun, and Cong. Automated Accelerator Optimization Aided by Graph Neural Networks. DAC 2022.
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Evaluation

Mean Percentage Estimation Error,

Mean Multiplications for Inference,

Normalized to GNN-DSE (DAC '22) Normalized to GNN-DSE (DAC '22)
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DSPs Latency Clock Period

Local-focused approaches
reduce redundant processing

- =  GNN-DSE
B Balor's Graph Compiler
+ Local Focused

Sohrabizadeh, Bai, Sun, and Cong. Automated Accelerator Optimization Aided by Graph Neural Networks. DAC 2022.




How to Go About QoR Estimation?

4 )
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| | =1 B
I
Graph | 5 || GNN || I - |
— Compiler R | Encoder | | Estimator —> | |
| | |
N~ — — — / |\ | _ _I
Graph Graph Quality of Results
. Representation Embedding Estimates
Balor, our QoR estimator, increases estimation
accuracy and reduces computational cost
A new Revisited estimation stack
e HLS-specific, information-dense graph * Local GNNs localize cross-graph interactions

* Hierarchical GNNs increase information density

Murphy and Josipovié. Balor: HLS Source Code Evaluator Based on Custom Graphs and Hierarchical GNNs. ICCAD 2024.



What are Hierarchical GNNs?

Flat GNNs use 1 network and 1 reduction:

Graph Graph Vector
»1 GNN »| Reduce to Vector —>

Vs

Hierarchical GNNs use multiple networks and multiple reductions
to increase information density:

Graph 1 Graph 1 : Graph 2 (—— ) Graph 2 Vector
—>»| GNN 1 »| Reduce Graph Size » GNN 2 ' »| Reduce to Vector —>»
4 D

How to cluster the graph to
reduce its size?




How to Cluster?

void kernel(int a[1024]){
for(int i=0; i<1024; i++){
al[i] *= 5;

Return
void

i32[1024]

7 Local N\
W

a




How to Cluster?

void kernel(int a[1024]){
for(int i=0; 1<1024; i++){ Good clusters already exist:
ali] *= 5; . .

} basic blocks in the control-flow graph

BB O




Hierarchical Architecture

Local-Focused Architecture:

—>[ R —

M

—>

R

—>

M

Action Level GNN

Vs

=

FNN

Decoders

}a.

Move to a hierarchical architecture:

M

Action Level GNN

T E-m-»

'

—

M

- [ -

Basic Block Level GNN

— [ FNN —
Decoders

=

[
A
=

@@E@

~

Message-Passing Layer
Jumping Knowledge Network
Residual Block
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Hierarchical GNNs
further reduce error at low cost

Mean Multiplications for Inference,
Normalized to GNN-DSE (DAC '22)

- = GNN-DSE

B Balor's Graph Compiler
+ Local Focused

B <+ Hierarchical

Sohrabizadeh, Bai, Sun, and Cong. Automated Accelerator Optimization Aided by Graph Neural Networks. DAC 2022.




15t Place at ML Contest for Chip Design with HLS

ML Contest for Chip Design with HLS

Machine Learning Contest for Chip Design with High-Level Synthesis

Overview Data Discussion Leaderboard Rules

Overview
This competition is hosted by UCLA Vastlab, UCLA DM lab, and AMD.

Please sign-up on our official sign-up sheet to be eligible to receive prizes

High-level synthesis (HLS) aims to raise the abstraction level in hardware design, enabling the
design of domain-specific accelerators (DSAs) like field-programmable gate arrays (FPGAs) using
C/C++ instead of hardware description languages (HDLs). The figure on the right shows an
example of HLS designs, where the C++ code defines the functionality and compiler directives in
the form of pragmas play a crucial role in modifying the microarchitecture within the HLS
framework which determine the performance (e.g., latency and resources utilization rate) of the
hardware.

Overview Data Discussion Leaderboard Rules

# A Team Members
1 — Emmet Murphy 4%\

Code 1: Code snippet of the vt kernel (Matrix Vector Product and
Transpose) with its 8 pragmas starting with “$oragas”.

Competition Host 4%\
Zongyue Qin /

Prizes & Awards

Kudos
Does not award Points or Medals

Participation
170 Entrants

51 Participants
27 Teams

608 Submissions

Score

1.26033

Minimize —

S, RMSE(t)

F1+10°°

\,

1.
2.
3.

1.26 - Balor
1.72 (+37%)
1.99 (+58%)

Murphy and Josipovié. Balor: HLS Source Code Evaluator Based on Custom Graphs and Hierarchical GNNs. ICCAD 2024.




Where Do We Go from Here?

* Balor: an HLS source code evaluator
— Information-dense, HLS-tailored graphs
— Local and hierarchical GNNs
— Increased estimation accuracy and reduced computational cost

i Source Code Evaluator \
- .| |Produce diagnostic Recommend
BESION ~jiace BxprOreY . ) uoutpluts ‘P Optimization
Inputs (code Choose Next GNNs for accurate quality of results
configurations) Candidate | |Eestimate quality of X i .
— \‘L_]results ) estimation directly from the source code

Y

( Estimated circuit quality
L (area, perf., power)

How to generalize to different HLS
tools, FPGAs, unseen kernels,...?

Murphy and Josipovié. Balor: HLS Source Code Evaluator Based on Custom Graphs and Hierarchical GNNs. ICCAD 2024.



Where Do We Go from Here?

* Balor: an HLS source code evaluator
— Information-dense, HLS-tailored graphs
— Local and hierarchical GNNs
— Increased estimation accuracy and reduced computational cost

How to provide insights that guide

4 Source Code Evaluator ) design space exploration?
Design Space Explorer nl Prod":;‘:’i:tgs“”ﬁc > g::?n':;:‘a:i':; ]
Inputs (code Choose Next _ _ GNNs for accurate quality of results
configurations) Candidate | |Eestimate quality of X i .
- A results ] ) estimation directly from the source code

Y

(Estimated circuit quality
L (area, perf., power)

How to generalize to different HLS
tools, FPGAs, unseen kernels,...?

Murphy and Josipovié. Balor: HLS Source Code Evaluator Based on Custom Graphs and Hierarchical GNNs. ICCAD 2024.



Bridging the Gap Between Software and Hardware

SW

How to make hardware design GNNs for accurate quality of results estimation
accessible to non-experts? directly from the source code
How to automatically extract
parallelism from software code?

How to avoid hardware-level
functional verification?

How to understand and account for
hardware implementation details?

HW

Murphy and Josipovié. Balor: HLS Source Code Evaluator Based on Custom Graphs and Hierarchical GNNs. ICCAD 2024.



Bridging the Gap Between Software and Hardware

Typical software features prevent hardware parallelism

SW for (i=@; i<N; i++) {

Irregular memory access patterns

| hist[x[i]] = hist[x[1]]|+ weight[i];

}

Fork

How to automatically extract
parallelism from software code?

[1oad nist] [Toadw |

store hist

4

@ OB

Sb 401\00

2

1 loadw

Vv

Features of 000 superscalar
processors (e.g., speculation)
- up to 14.9X faster than
Vivado HLS circuits

Dynamatic: an open-source HLS compiler that
generates dynamically scheduled circuits from C/C++

HW

Josipovié, Ghosal, and lenne. Dynamically Scheduled High-Level Synthesis. FPGA 2018 Best Paper Award Nominee
Josipovi¢, Sheikhha, Guerrieri, lenne, and Cortadella. Buffer Placement and Sizing for High-Performance Dataflow Circuits. FPGA 2020 Best paper award




Bridging the Gap Between Software and Hardware

Functional verification of circuits using hardware simulation

- inefficient, limited, non-exhaustive
Stimulus > Circuit »| Output
checker

Functional verification
Covers representative behaviors

Verification Model .
model checker [ Property holds/failed

YY

Customize circuit logic
(50% area reduction)

How to avoid hardware-level Formal
Q ° o ° P t
functional verification? roperty

s s FF
Formal verification litd
’

Covers all behaviors

Formal verification for HLS: prove HLS
correctness and improve HLS—generated circuits

HW

Xu, Murphy, Cortadella, and Josipovi¢. Eliminating excessive dynamism of dataflow circuits using model checking. FPGA 2023.
Elakhras, Guerrieri, Erhart, lenne, and Josipovi¢. ElasticMiter: Formally Verified Dataflow Circuit Rewrites. ASPLOS 2025




Bridging the Gap Between Software and Hardware

Standard pipelining (register placement) is unaware of circuit
transformations during logic synthesis and technology mapping

SW vali‘ajl.n reaﬁiyout
s 'm\ )
X
a4
'S) N/ ins
u_ 's)
Y A
[)FF
S . |/
valid, o ready;

g [ > Total delay
= pre-synthesis = 3 ns
valid
'
~
a4
Q
How to understand and account for
| hardware implementation details? e e e /

HW

Rizzi, Guerrieri, and Josipovi¢. An Iterative Method for Mapping-Aware Frequency Regulation in Dataflow Circuits. DAC 2023
Wang, Rizzi, and Josipovi¢. MapBuf: Simultaneous Technology Mapping and Buffer Insertion for HLS Performance Optimization. ICCAD 2023 Best Paper Award Nominee




Bridging the Gap Between Software and Hardware

Standard pipelining (register placement) is unaware of circuit
transformations during logic synthesis and technology mapping

SW vali‘gm readyout

FORK

valid, o ready;

TN 1 Total delay

g[_lhgl_tlﬁ T > post-place-and-route

VL losy Wirj delay =0 ns

i = ready = 1 ns
valid ’--\
4 1 :LUT delay\
=0.5ns

FORK

How to understand and account for
hardware implementation details?

valid, .o ready;,, valid, . ready,

HW Implementation-aware compiler optimizations
for fast and small circuits

Rizzi, Guerrieri, and Josipovi¢. An Iterative Method for Mapping-Aware Frequency Regulation in Dataflow Circuits. DAC 2023
Wang, Rizzi, and Josipovi¢. MapBuf: Simultaneous Technology Mapping and Buffer Insertion for HLS Performance Optimization. ICCAD 2023 Best Paper Award Nominee




SW

HW

Bridging the Gap Between Software and Hardware

How to understand and account for
hardware implementation details?

FPGA implementation (synthesis, placement, and routing) is
orders of magnitude slower than software compilation

do x++
while (x<N)
return x

<

xsta rt

"l

Merge
v
Buff

o

Add

Fork

94

Cmp

\ 4

Branch|«
] X' To place: 151 LUTs, 124 FFs
end To route: 1299 wires (bits)

Slow (mins-hours) ®

Guerrieri, Guha, Lavin, Hung, Josipovi¢, and lenne. DynaRapid: Fast-Tracking From C to Routed Circuits. FPL'24. Best Paper Award




Bridging the Gap Between Software and Hardware

FPGA implementation (synthesis, placement, and routing) is
orders of magnitude slower than software compilation

SW do x++.
while (x<N) ﬁ Xstart
return x *
o l
Xstart v e
A 4 l Fixed set of dataflow modules
M(:‘ge E::El IEI - pre-implemented module library
v
Buff
1
| 0> ;
Add T
[LUT] Design-specific connections
e m ......... - place & route
Fork —y"
N LUT
LUT
l_l * LUT
How to understand and account for S y
| hardware implementation details? Sranchl< g hast andimodular
e P&R
—I I xend

Xend
To place: 6 dataflow modules

To route: 306 wires (bits)

20x implementation speedup ©

Guerrieri, Guha, Lavin, Hung, Josipovi¢, and lenne. DynaRapid: Fast-Tracking From C to Routed Circuits. FPL'24. Best Paper Award



Bridging the Gap Between Software and Hardware

High-level abstractions Hardware compilers Hardware design
R
i formal methods
programming languages, ' ' r . ,
software applications electronic design automation systems, digital design,

computer architecture

for (j = 0; j < 10; j++) {
float x = 0.0;
for (i = 0; 1 < 10; i++)

x += data[i][j];
mean[j] = x / float_n;
}

for (j = 0; j < 10; j++) {

float x = 0.0;

for (i = 0; 1 < 10; i++)

x += (data[i][]j] - mean[j]) *

(data[i][j] - mean[j]);

x /= float_n;

X = X*X;

stdev[j] = x;

}

Make hardware design
broadly accessible, fast, and reliable




DYNAMO: Digital Systems and Desigh Automation Group

Research group:

[=]

dynamo.ethz.ch github.com/ETHZ-DYNAMO/balor
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