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Convolutional Neural Network
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Motivation for this research
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Neural networks for machine learning are 
becoming larger and deeper (such as 
LLM)

Cloud servers consume large amounts of 
electric energy

Hyperparameter (HP) Optimization is 
crucial to obtain more intelligent ML 
systems with less energy consumption
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Hyperparameters (HP) of CNN
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In Convolutional Neural Networks (CNNs), 
there are many hyperparameters that you 
can tune to optimize the performance of 
the model.

Kind of parameters
Hard type

Soft type 
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Hard Type HP Examples
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Number of Filters (Kernels)

Filter Size (Dimensions)

Stride

Padding

Pooling Size and Types

Architecture
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Soft Type HP Examples
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Learning Rate

Number of Epochs

Batch Size

Dropout Rate

Regularization Parameters

Activation Function

Optimizer, etc.
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HP Optimization
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 Challenging Issue due to the following reasons: 

 Vast Parameter Space
 Numerous Combinations

 Interdependencies of Parameters

 Execution Time and Cost
 Expensive and Time-consuming Experiments

 Probabilistic Behavior of Component

 Complex Interactions
 Parameter Interactions

 Global Optimization Challenge
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HP Optimization Methods
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Blackbox
Optimization using objective function values only 

(current mainstream)

Gray box
Utilize auxiliary information useful for optimization 

derived from the characteristics of the target 
problem(current trend)

Others
Gradient method, Reinforcement Learning (not 

major)
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Observations (1)
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Optimizing the number of neurons in each 
layer of a Neural Network has the following 
ease and difficulties

Ease
 The shape of learning curves (Loss, Accuracy) are 

roughly unimodal

Difficulties
 Computation time for the learning is dominant 

 The learning curves are superimposed on the 
stochastic error
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Accuracy vs Hidden Layer Size

 Initially, Accuracy 
increases as the 
number of neurons 
increases.

 When the number of 
neurons exceeds a 
certain value, Accuracy 
decreases.
(Overlearning)

 The graph is roughly 
unimodal
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Observations (2)
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Full Grid Search can find the global 
optimum HP combination, but time-
consuming and not practical

Hill climbing search is one of the best 
and easiest methods to understand, but it 
may fail to find the Global Optimum 
Solution

Any good idea?
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3 Layer Neural Network 
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Solution Space and Global Peak

2024/7/8 23Copyright © kcg.edu. All Rights Reserved.

Global Peak (0.9803)



“Noise” makes Local Peaks
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Proposals
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Use of the Logarithmic Spacing Grid

Use straight forward search method
Full Cross-Search Method

Partial Cross-Search Method
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Logarithmic Spacing Grid

2024/7/8 26Copyright © kcg.edu. All Rights Reserved.



Full Cross-Search Example
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Step 1 Local Peak

Step 2
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Target CNN

Application: Hand Written Digits 
recognition

Dataset: MNIST

Input: 28 x 28 x 8bit grayscale image

Output: 0, 1, 2, …, 9

60,000 learning data + 10,000 test data 
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Part of MNIST Dataset

Grayscale image

28 x 28 bytes 

Data type: uint8 
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Outline of Optimum Solution

Known Optimum Solution
#neurons in L1 =     128

#neurons in L2 = 4,096

Accuracy = 0.9803

Relative Computation Time
#of multiplication op’s / learning cycle

𝑇 𝑁𝑖𝑛, 𝑁1, 𝑁2, 𝑁𝑜𝑢𝑡 = 𝑁𝑖𝑛 × 𝑁1 + 𝑁1 × 𝑁2 +𝑁2 × 𝑁𝑜𝑢𝑡

 𝑇 28 × 28, 128, 4096, 10 = 43,672,128

2024/7/8 Copyright © kcg.edu. All Rights Reserved. 31



Full Grid Search
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Hill Climbing
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The Global Peak 
was missedTrapped by a Local

Peak (0.9792)



Global and Local peaks
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Global Optimum Solution
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Full Cross-Search Example
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Partial Cross-Search
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Parameter “Limit” (= 1, 2, 3, …)

Continues search Limit more steps after a 
local peak was found

As the Limit increases, Partial Cross-
Search returns a better solution, but 
longer computation time is required
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Partial Cross (Limit=1～4）
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The Global 
Peak (0.9803)



Experimental Results

Search
Algorithm

Hyper 
Param

Accuracy Diff.
Relative

Comp. Time

Full Search (128, 4096) 0.9803 0.0000 1.0

Hill Climbing (256, 128) 0.9792 0.0011 0.075

Full Cross (L2)
Partial Cross (L2)

(128, 4096) 0.9803 0.0000
0.273
0.257

Full Cross (L1)
Partial Cross (L1)

(256, 128) 0.9792 0.0011
0.280
0.063

Partial Cross (L2) (128, 64) 0.9791 0.0012 0.031

Partial Cross (L) (64, 32) 0.9789 0.0014 0.034

2024/7/8 Copyright © kcg.edu. All Rights Reserved. 39



Computation Time vs Accuracy
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Distribution of Accuracy

Top 8 Acc values
0.9803

0.9793

0.9792

0.9792

0.9791

0.9790

0.9789

0.9789
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Conclusion (1)
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 Accuracy
 Accuracy of Full Cross-Search is comparable to Full Grid 

 Accuracy of Partial Cross-Search is comparable to Hill Climb 

 Computation Time
 Full Cross-Search is about 3 times as fast as Full Grid 

 Partial Cross-Search with limit=1 is the fastest, about 2.5 times 
as fast as Hill Climb

 The accuracy of the solutions obtained by the Partial 
Cross-Search is high enough

 Partial Cross-Search is scalable and cost-effective

Copyright © kcg.edu. All Rights Reserved.



Conclusion (2)
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Full / Partial Cross-Search are suitable 
for Optimization of HPs with continuous 
quantity

Suitability for Parallel Computation
Full Grid and Full Cross-Search have good 

Parallelism

Hill Climb Search has limited parallelism
(only “neighbors” of candidate combination of HP 
can be computed in parallel)
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Future Work
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Effect of the search Start Point 
assessment

Application of Full / Partial Cross to other 
HPs and larger neural network

Comparison with other HP optimization 
methods (Random Search, Bayesian, etc.)

Validity of learning assessment results 
(accuracy, loss, etc.) using early learning 
epochs
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Accuracy vs. Epochs
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