
5
Megève, France, June 20, 2025

Experimental Software and Hardware Evaluation
of Ad-Hoc Constant Division Routines
Frédéric Pétrot
Grenoble INP/Université Grenoble Alpes,
CNRS, TIMA Lab,
F-38000 Grenoble, France
� frederic.petrot@univ-grenoble-alpes.fr

mailto: frederic.petrot@univ-grenoble-alpes.fr

Why divide by integer constants?

Initially Motivated by AI Computations
Average Pooling
Kernel shapes known beforehand for hw implementations
Kernel usually square k× k, with k odd and ”small”
Look for efficient x

k2 implementation

Many algorithms need that!
Printing decimal numbers, filters in signal processing, ...
Lots of prior art, since the mists of time, summarized in:
I Hacker’s Delight, Warren, Chapter 10
I Application-Specific Arithmetic, De Dinechin & Kumm, Chapter 13
I Focus of this talk: Ad-Hoc Cookbook proposed by Li in 1985

2 / 13

General approach: multiply by the reciprocical

Compute 1
p , with p odd and p ≥ 3

1

p = 0.(0b1b2b3 . . .bn−1b1b2b3 . . .bn−1)

x
p =

x
b121

+
x

b222
+

x
b323

+
x

b424
+ · · ·

Note that binary pattern is repeating ad infinitum:
Quickly for some numbers, not so much for others

1
3 = 0.010101010101010101010101010101010... = 0.(01)∗
1
23 = 0.000010110010000101100100001011001... = 0.(00001011001001)∗
1
47 = 0.000001010111001001100010000010101... = 0.(00000101011100100110001)∗
1
63 = 0.000001000001000001000001000001000... = 0.(000001)∗

Use infinite product rather than infinite series
3 / 13

Finding the pattern and its period

Li’s first proposal based on Fermat Euler’s theorem
Assuming p > 1 odd, find smallest n such that p divides 2n − 1
2n−1
p = b1b2b3 . . .bn−1

1
p = 0.(0b1b2b3 . . .bn−1)

∞∏
i=0

(1 +
1

2n×2i
)

Example: x
23

Smallest integer n such that 23 divides 2n − 1 is 11
2047
23 = 89 or 10110012
Must be written on 11 bits to have the proper magnitude 000010110012

x
23

=
(x
25

+
x
27

+
x
28

+
x
211

)(
1 +

1

211

)(
1 +

1

222

)
· · ·

5 adds and 6 shifts instead of 12 adds and 11 shifts for infinite series 4 / 13

Computing the division

Continuing with x
23
: unfortunately x

2n
6= b x

2n
c (that is x � n)

uint32_t bad_divu23(uint32_t x)
{

x = (x >> 5) + (x >> 7) + (x >> 8) + (x >> 11);
x = (x >> 11) + x;
x = (x >> 22) + x;
return x;

}

Incorrect, rounding is very soon an issue
General approach computes remainder and corrects:
uint32_t good_divu23(uint32_t n)
{ /* needs also mult and test to be correct! */

uint32_t x = n, r;
x = (x >> 1) + (x >> 3) + (x >> 4) + (x >> 7);
x = (x >> 11) + x;
x = (x >> 22) + x;
x = x >> 4;
r = n - x * 23;
return x + (r > 22);

} 5 / 13

Li’s Routines Sample

Handmade routines for unsigned division
Li: Playing with the binary decomposition, its complement, add and sub, simpler
expressions can be found empirically

uint32_t good_divu23(uint32_t n)
{

/* 7 add and 7 shifts, but also
mult and test to be correct! */

uint32_t x = n, r;
x = (x >> 1) + (x >> 3)

+ (x >> 4) + (x >> 7);
x = (x >> 11) + x;
x = (x >> 22) + x;
x = x >> 4;
r = n - x * 23;
return x + (r > 22);

}

uint32_t <ug?>li_divu23(uint32_t n)
{

/* just 6 shifts and 6 adds, magic ! */
uint32_t x = n + 1;
x = (((x >> 3) + x) >> 1) + x + (x << 2);
x = (x >> 11) + x;
x = (x >> 22) + x;
x = (x >> 7);
return x;

}

Quite mind blowing!
But there is not free lunch:
Erroneous from 0x2e000000 on

6 / 13

Li’s Routines Sample

Handmade routines for unsigned division
Li: Playing with the binary decomposition, its complement, add and sub, simpler
expressions can be found empirically

template<unsigned int S = 32>
sc_uint<S> divu23(sc_uint<S> n)
{

sc_uint<S + 3> x = n + 1;
x = (((x >> 3) + x) >> 1) + x + (x << 2);
x = (x >> 11) + x;
x = (x >> 22) + x;
x = (x >> 7);
return x;

}

Works for all 32-bit values,
at the cost of ”just” 3 more bits
⇒ Expensive in software,
⇒ Cheap in hardware

6 / 13

Li’s Routines
Unsigned division for odd numbers between 3 and 55 included

Not all are correct
5 erroneous routines, among which:
I 3 transcription errors: 7, 27, 39,
I 2 seemingly just wrong: 49, 53

static inline uint32_t divu49(uint32_t n)
{ /* 1 more shift than Li's */

uint32_t x = n;
x = (x << 2) - (x >> 5) + 2;
x = x + (x >> 2) + (((x >> 4) + x) >> 4);
x = (x >> 21) + x;
x = x >> 8;
return x;

}

static inline uint32_t divu53(uint32_t n)
{ /* 2 more shifts and adds than Li's */

uint32_t x = n + 1, y;
y = (x << 1) + (x >> 2);
y = x + y + (y >> 5);
y = y + ((x - (x >> 3)) >> 11)

+ ((x - (x >> 5)) >> 16)
+ (x >> 23) + (x >> 24);

x = (x << 2) + (y >> 2);
x = (x >> 8);
return x;

} 7 / 13

Software evaluation: Cycle count on x86_64

Granlund & Montgomery
Variations used by gcc and clang: mult by a magic constant and correction

uint32_t gm_divu23(uint32_t n)
{

uint64_t x = n;
uint64_t u = 0xd79435fll * x;
uint64_t h = u >> 32;
u = u - h * 0xd;
return (uint32_t) (u >> 32);

}

3 5 7 9 11 13151719212325272931333537394143454749515355

m
ea
n

0

50

100

150

200

250

300

350

Divisor

Cy
cl
e
co
un
tf
or
10
0
ex
ec
ut
io
ns

Shift and Add
Multiply High

8 / 13

Hardware Evaluation : Li’s Resources on FPGA

4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
0

25

50

75

100

125

150

175

200

225

Dividend bitwidth

Nu
m
be
ro
fL
UT
s

3 5 7 9 11 13 15 17 19

21 23 25 27 29 31 33 35 37

39 41 43 45 47 49 51 53 55

Li: Number of LUTs on Virtex 7.

9 / 13

Hardware Evaluation : Li’s Timings on FPGA

4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

4

5

6

7

8

9

10

Dividend bitwidth

De
la
y
in
ns

Li: Circuit delay in ns on Virtex 7.

10 / 13

Hardware Evaluation : Comparison with SoA on FPGA

Delay and area after FPGA synthesis (BR: Block Ram)
This work SC (Arith 2023) LinArch (TC 2017) BTCD (TC 2017)
Delay Area Delay Area Delay Area Delay Area

d n ns LUTs ns LUTs ns LUTs ns LUTs + BR

16 7.2 46 4.1 40 3.6 17 3.7 37
3 32 8.6 114 11.4 98 6.0 32 4.8 95
64 9.0 277 27.5 379 13.5 63 6.2 225

16 7.2 44 4.0 52 4.4 21 3.8 44
5 32 8.6 111 10.6 123 9.3 45 4.7 109
64 9.0 274 27.3 386 20.1 93 6.7 270

16 7.5 42 3.9 53 8.0 39 3.8 79
11 32 8.7 106 10.7 159 17.9 87 6.1 212
64 10.4 265 26.9 436 39.0 183 8.8 526

16 7.5 41 3.9 52 7.4 69 5.6 197
23 32 8.7 103 10.4 187 18.5 165 6.8 436 + 1BR

64 10.4 256 26.1 493 36.6 357 6.5 959 + 2.5BR

11 / 13

Hardware Evaluation : Comparison with SoA on FPGA

Delay and area after FPGA synthesis (BR: Block Ram)
This work SC (Arith 2023) LinArch (TC 2017) BTCD (TC 2017)
Delay Area Delay Area Delay Area Delay Area

d n ns LUTs ns LUTs ns LUTs ns LUTs + BR

16 7.2 46 4.1 40 3.6 17 3.7 37
3 32 8.6 114 11.4 98 6.0 32 4.8 95
64 9.0 277 27.5 379 13.5 63 6.2 225

16 7.2 44 4.0 52 4.4 21 3.8 44
5 32 8.6 111 10.6 123 9.3 45 4.7 109
64 9.0 274 27.3 386 20.1 93 6.7 270

16 7.5 42 3.9 53 8.0 39 3.8 79
11 32 8.7 106 10.7 159 17.9 87 6.1 212
64 10.4 265 26.9 436 39.0 183 8.8 526

16 7.5 41 3.9 52 7.4 69 5.6 197
23 32 8.7 103 10.4 187 18.5 165 6.8 436 + 1BR

64 10.4 256 26.1 493 36.6 357 6.5 959 + 2.5BR

11 / 13

Hardware Evaluation: ASIC
STMicroelectronics 28 nm FDSOI technology

4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64
0

200
400
600
800

1,000
1,200
1,400

Dividend bitwidth

Ar
ea

in
µ
m

2

3 5 11 23 47 51

4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64
0

0.5
1

1.5
2

2.5
3

3.5
4

Dividend bitwidth

De
la
y
in
ns

Comparison with SOA (TC 2017)
I Slower than SOA for small to
medium bit sizes, but SOA
slope steeper

I Easily pipelineable for
high-throughput

I Area about half the size of SOA
solutions

12 / 13

Take away

Li’s approach hard to scale
Erroneous above ”some” point

Li’s approach hard to generalize
No nice formulation found for division with SA
Not even some kind of algorithm
⇒ Trial and error approach not satisfactory

Nevertheless...
Provides a different trade-off compared to existing hardware approaches
Very dependent on the value of the divisor and the target technology
⇒ Can be useful on a case-by-case basis

Code, of the PoC kind, ...
https://github.com/fpetrot/divbysmallcst

13 / 13

https://github.com/fpetrot/divbysmallcst

Thanks for listening

Thanks to French DGE and EU that is financing the EdgeAI project

ACKNOWLEDGEMENTS
EdgeAI “Edge AI Technologies for Optimised Performance Embedded Processing”
project has received funding from Chips Joint Undertaking (Chips JU), under grant
agreement No 101097300. The Chips JU receives support from the European

Union’s Horizon Europe research and innovation program and Austria, Belgium,
France, Greece, Italy, Latvia, Netherlands, Norway.

14 / 13

	Context
	Li's Routines
	Evaluation

