

RYZEN **Exploiting Structured Sparsity** for Efficient Inference on Client/Edge NPUs

Yaswanth Raparti Design Engineering Manager RyzenAl

AI Acceleration on Client/Edge Devices

- Wide range of AI/ML applications in edge and client devices
- Object detection, image generation, translation, recommendation etc.
- Generative AI models with billions of parameters
- Latency critical and power constrained

Efficiency of Inference Accelerators

- GPUs are designed to hide latency with several thread blocks scheduled on streaming multi-processors
 - Poor in energy efficiency
 - Generates temperature hotspots
- Inference on client devices require high energy efficiency
 - Measured in TOPS/W
- NPUs are application specific instruction processors (ASIP)
 - Tailor made for low control overhead, and high instruction throughput

T. Tan et al. "Thermal-Aware Scheduling for Deep Learning on Mobile Devices with NPU", IEEE TMC 2020

NPU Architecture

- Array of AI Engine cores (arranged in a grid)
 - Each core has VLIW pipeline with SIMD instructions
 - 8x8x8 MatMul instructions
 - Computes in int4/Int8/fp16/bfp16 data type
 - 64KB data memory
 - 16KB program memory
- A row of Memory tiles
 - 512KB each with 64KB banks
 - Each memory tile supports a column of AIE cores
 - Connected to cores using interconnect streams (4 NB, 4 SB)
 - DMA engine supports 4D tiled Rd Wr access patterns
- A row of Shim tiles
 - Connects memory tiles with DRAM and external controller
 - DMA engine supports 3D tiled Rd Wr access patterns

Inference on NPU

- NPUs are designed for energy efficiency
 - Lack of hardware caching schemes
 - Low-bit precision math
 - Mostly support 4/8/16-bit data-types
 - Lack of non-linear hardware functions
 - Restrictions on data ordering (tiling)
 - Shared DRAM bandwidth
 - Programming models not standardized
- Need for powerful ML compilers to map applications on NPU
 - Graph level optimizations to save DRAM bandwidth
 - Explore the possible tilings for each operation
 - Aim for high data-reuse
 - Dataflow scheduling for efficient compute and dataflow
 - Reduce the control overhead and maximize utilization
 - Resolve deadlocks and starvation

Exploiting Sparsity in NPUs

- Most neural network layers are <u>compute/memory</u> intensive
 - Model compression techniques are used to reduce the BW load
- Sparsity is supported by different training and inference platforms
 - Random sparsity N:M (Dense sparsity)
 - Structured sparsity (coarse grained mxn blocks)
- Random sparsity
 - Training is well explored (Hubara et al. NeurIPS 2021)
 - Achieves high compression
 - Requires specialized hardware for computation
 - High overhead in decoding
- Structured sparsity
 - Training is challenging
 - Low overhead
 - Does not required specialized hardware

We use structured sparsity to avoid the need for specialized hardware

Exploiting Structured Sparsity on AIE

- Training on pre-trained network
 - choose block size
 - Sparsity ratio
- Compilation for each layer
 - Tile the activation and weights per column
 - Create subvolumes
 - Compress data
 - Maximize reuse
- Code generation
 - Runtime DMA configuration
 - Minimize control overhead
- Performance Analysis
 - Measure achieved speedup
 - Feedback to training module to pick different block size

Training for Block Sparsity

- Block sizes are multiples of 8x8
 - Corresponds to the HW MatMul granularity
 - Keep inner dimension contiguous
 - Helps with spatial locality
 - E.g. weights [Ic, H, W, Oc] -> weights' [Ic', H, W, Oc']

- Searching for optimal sparse ratio
 - Sparse ratio as incremental
 - Start with minimum sparse ratio, increment no. of sparse blocks till max sparsity is reached
 - Sparse ratio as a learnable parameter
 - Predetermined sparsity ratio and full training

Compilation Framework

- Process each layer to find
 - Suitable memory tile allocation
 - Subvolume determination
 - Dataflow schedule
- Memory tile allocation
 - Activations, weights and outputs share mem-tile
 - Break down the op into subvolumes that fit in mem-tile and AIE core
- Schedule subvolumes to maximize reuse
 - Compress the subvolumes
 - Each subvolume has dense data and a mask
- At the end of each layer
 - Check if output can fit in mem-tile for reuse in next layer
 - Or evict the output to DDR
- Dataflow Schedule
 - Generate a graph of instructions that represent dataflow
 - Represented using IR

Code Generation

- Takes dataflow IR as input
- Generate runtime control code
 - Programs DMA controllers to read/write data
 - Kernels are programmed at initialization
- Code generation goals
 - Minimize runtime control overhead
 - Dynamic management of DMA channels
 - Maximize resource utilization
 - Avoid deadlocks
- DRC checks
 - Run the DRC tool to catch potential failures
 - Register overflows
 - Buffer overwrites
 - Deadlocks

Experimental Results

- Block size is set to 8x8
- Evaluated using CNNs
 - Conv layers are more complex than GeMMs
 - GeMM can be a special case of 1x1 Conv
- Observed ~50% improvement in latency 0.5 sparse ratio

Dense Conv

50% sparse conv

E2E Latency & Energy

- ~40% improvement in latency
- ~60% improvement in energy consumption
- Usage of smaller grids help exploit sparsity better due to pipelining of compute and dataflow

Thank you