
Exploiting Structured Sparsity 
for Efficient Inference on 

Client/Edge NPUs
Yaswanth Raparti

Design Engineering Manager
RyzenAI

AMD



AI Acceleration on Client/Edge Devices
● Wide range of AI/ML applications in edge and client devices
● ⁃Object detection, image generation, translation, recommendation etc.
● ⁃Generative AI models with billions of parameters
● ⁃Latency critical and power constrained



 Efficiency of Inference Accelerators

● GPUs are designed to hide latency with several thread blocks scheduled on streaming multi-processors
○ Poor in energy efficiency
○ Generates temperature hotspots

● Inference on client devices require high energy efficiency
○ Measured in TOPS/W

● NPUs are application specific instruction processors (ASIP)
○ Tailor made for low control overhead, and high instruction throughput 

T. Tan et al. “Thermal-Aware Scheduling for Deep Learning on Mobile Devices with NPU”, IEEE TMC 2020



NPU Architecture

● Array of AI Engine cores (arranged in a grid)
○ Each core has VLIW pipeline with SIMD instructions
○ 8x8x8 MatMul instructions
○ Computes in int4/Int8/fp16/bfp16 data type
○ 64KB data memory
○ 16KB program memory

● A row of Memory tiles
○ 512KB each with 64KB banks
○ Each memory tile supports a column of AIE cores
○ Connected to cores using interconnect streams (4 NB, 4 SB)
○ DMA engine supports 4D tiled Rd Wr access patterns

● A row of Shim tiles
○ Connects memory tiles with DRAM and external controller
○ DMA engine supports 3D tiled Rd Wr access patterns AI Engine Array



Inference on NPU

High level 
compute graph

● NPUs are designed for energy efficiency
○ Lack of hardware caching schemes
○ Low-bit precision math

■ Mostly support 4/8/16-bit data-types
○ Lack of non-linear hardware functions
○ Restrictions on data ordering (tiling)
○ Shared DRAM bandwidth
○ Programming models not standardized

● Need for powerful ML compilers to map applications on NPU
○ Graph level optimizations to save DRAM bandwidth
○ Explore the possible tilings for each operation

■ Aim for high data-reuse
○ Dataflow scheduling for efficient compute and dataflow

■ Reduce the control overhead and maximize utilization
■ Resolve deadlocks and starvation

Intermediate 
representation 

(IR)

Backend 
optimizations

Machine Code



Exploiting Sparsity in NPUs
● Most neural network layers are compute/memory intensive

○ Model compression techniques are used to reduce the BW load
● Sparsity is supported by different training and inference platforms

○ Random sparsity N:M (Dense sparsity)
○ Structured sparsity (coarse grained mxn blocks)

● Random sparsity
○ Training is well explored (Hubara et al. NeurIPS 2021)
○ Achieves high compression
○ Requires specialized hardware for computation
○ High overhead in decoding

● Structured sparsity
○ Training is challenging
○ Low overhead
○ Does not required specialized hardware

We use structured sparsity to avoid the need for specialized 
hardware 



Exploiting Structured Sparsity on AIE

● Training on pre-trained network
○ choose block size
○ Sparsity ratio

● Compilation for each layer
○ Tile the activation and weights per column
○ Create subvolumes
○ Compress data
○ Maximize reuse

● Code generation
○ Runtime DMA configuration
○ Minimize control overhead

● Performance Analysis
○ Measure achieved speedup
○ Feedback to training module to pick different block size

Training

Compilation

Code 
Generation

Performance 
Analysis



Training for Block Sparsity

● Block sizes are multiples of 8x8
○ Corresponds to the HW MatMul granularity
○ Keep inner dimension contiguous
○ Helps with spatial locality

■ E.g. weights [Ic, H, W, Oc] -> weights’ [Ic’, H, W, Oc’]

● Searching for optimal sparse ratio
○ Sparse ratio as incremental 

■ Start with minimum sparse ratio, increment no. of sparse blocks till max sparsity is reached
○ Sparse ratio as a learnable parameter
○ Predetermined sparsity ratio and full training



Compilation Framework

● Process each layer to find
○ Suitable memory tile allocation
○ Subvolume determination
○ Dataflow schedule

● Memory tile allocation
○ Activations, weights and outputs share mem-tile
○ Break down the op into subvolumes that fit in mem-tile and AIE core

● Schedule subvolumes to maximize reuse
○ Compress the subvolumes

■ Each subvolume has dense data and a mask
● At the end of each layer

○ Check if output can fit in mem-tile for reuse in next layer
○ Or evict the output to DDR

● Dataflow Schedule
○ Generate a graph of instructions that represent dataflow
○ Represented using IR

Activation Reuse



Code Generation

● Takes dataflow IR as input
● Generate runtime control code

○ Programs DMA controllers to read/write data
○ Kernels are programmed at initialization

● Code generation goals
○ Minimize runtime control overhead
○ Dynamic management of DMA channels
○ Maximize resource utilization
○ Avoid deadlocks

● DRC checks
○ Run the DRC tool to catch potential failures
○ Register overflows
○ Buffer overwrites
○ Deadlocks



Experimental Results

● Block size is set to 8x8 
● Evaluated using CNNs

○ Conv layers are more complex than GeMMs
○ GeMM can be a special case of 1x1 Conv

● Observed ~50% improvement in latency 0.5 sparse ratio

Dense Conv 50% sparse conv



E2E Latency & Energy

● ~40% improvement in latency 
● ~60% improvement in energy consumption
● Usage of smaller grids help exploit sparsity better due to pipelining of compute and dataflow 



Thank you


