

Task-level run-time scheduling approach for dynamic real-time multi-media systems

Francky Catthoor, IMEC, Belgium

Current TCM research project members:

IMEC: Pol Marchal, Chun Wong, Peng Yang

K.U.Leuven-ESAT: Stefaan Himpe

Goal of our research

 A methodology to map dynamic and concurrent real-time applications on an embedded multiprocessor platform

Why are Applications becoming more dynamic and concurrent?

JPEG MPEG4

T1

T2

The workload decreases but the tasks are dynamically created and their size is data dependent

Local picture

MPEG-4: multimedia spec

- = too huge to handle as 1 task
- => break up in many interacting tasks

With this code my boss has to give me a raise!!!

Global picture: ad hoc

This didn't look so good after all???

Global trade-offs with cost-performance curves

Luckily we have the Pareto approach!

Outline

- Motivation: challenges in the system-level design
- Overview of methodology
- Cost-efficient run-time scheduling for RTOS
- Long term research challenges

Application domain

.g.: Multi-media algorithms with dynamic character (MPEG4, MPEG7)
Wireless and wired terminals (Internet, WLAN, ADSL, ...)

Real-time constraints and timing in the IM1-MPEG standard

Target architecture: Chip Multi Processor (CMP)

From L. Hammond, IEEE Computer, Sept 1997

Advantages:

- Performance: possibility to exploit thread level parallelism combined with ILP
- Energy: low energy cost per instruction by customizing the nodes (ASIPs) + effective memory hierarchy and distributed customisable organisation
- Flexible: programmable nodes
- Scalability: memory bandwidth is scalable (if good memory hierarchy is used)

Why aren't CMPs used now?

- Multi processors are used in servers and scientific computing
- Not in the context of embedded systems
 - efficient mapping requires a very high design effort when done manually
 - need for a compiler

C/C++ system refinement + exploration

Outline

- Motivation: challenges in the system-level design
- Overview of methodology: data management
- Cost-efficient run-time scheduling for RTOS
- Long term research challenges

Task Level DTSE on the IM1-player

PACT'00 (COLPwsh), PACS'00

Platform Independent Code Transformations

Access ordering and generation of the task (partial) precedence constraints

Results on IM1 player

	Memory Size Pre	Memory Size Post	Memory Energy Pre	Memory Energy Post
1Proc	86.9kB	14 .8kB	0.78mJ	0.16mJ
2Proc	193kB	19.41kB	1.54mJ	0.19mJ

Time-Budget (MA cycle budget)

Outline

- Motivation: challenges in the system-level design
- Overview of methodology: concurrency mngnt
- Cost-efficient run-time scheduling for RTOS
- Results on MPEG-4 IM1 player
- Long term research challenges

TCM steps aim at removing the bottlenecks for better performance

ICPP'00, Kluwer book'99

The 2-processor approach (scheduling + assignment)

Codes'01, J.of Sys.Arch (summer 2001)

Trade-off between time budget (period/latency) and cost (e.g.energy) leads to Pareto curves

Pareto curve for 2 proc. mapping

Comparison for original and transformed graphs on 2 processors with different Vdd

Comparison between different processor platforms

Outline

- Motivation: challenges in the system-level design
- Overview of methodology
- Cost-efficient run-time scheduling for RTOS
- Results on MPEG-4 IM1 player
- Long term research challenges

Why run-time scheduler?(I)

Design-time Scheduler

+ Predictability

- Flexibility

+ Run time complexity + Optimization

- Schedulability for

dynamic events

Run-time Scheduler

- Predictability

+ Flexibility

Run time complexity - Optimization

+ Schedulability for

dynamic events

Why run-time scheduler?(II)

- Design-time scheduler can only work at one operation point - no flexibility with changing environment
- It must consider the worst case a waste when it's in other cases
 - data dependency
 - non-determinism

Combination of design- and run-time schedulers

- Design-time scheduling: at compile time, exploring all the optimization possibility
- Run-time scheduling: at run time, providing flexibility and dynamic control at low cost

Cases'00, Design&Test- Sep.'01

Run-time scheduling example(I)

- + •A new thread frame coming •20 cycle budgets available
- Cycle Budget

Run-time scheduling example(II)

Run-time scheduling example(III)

ADSL System Architecture

- TX and RX CTRL have a deadline equal to one symbol, where $f_{\text{symbol}} = 4 \text{ kHz}$
- SW tasks have deadlines much longer, for example, 128 symbols

Granularity of the threads can be important

Run-time scheduling result

total energy

- Two Proc. $(v_{low} = 1V, v_{high} = 5V)$
- One Proc.(v = 5V)

Cases'00

Main messages

- Embedded multi-media applications are becoming very dynamic and concurrent in nature
 => RTOS essential
- Task Concurrency Management approach provides the flexibility and optimization possibility while limiting the run time computation complexity
- A multiprocessor platform with different working voltages potentially provides an energy saving solution
- Application-specific run-time scheduling technique combined with design-time scheduling to provide cost-performance Pareto-curve essential for effective solution

Outline

- Motivation: challenges in the system-level design
- Overview of methodology
- Cost-efficient run-time scheduling for RTOS
- Results on MPEG-4 IM1 player
- Long term research challenges

Research challenges

- Extract "grey box model" from conventional specifications
- Classification and design support for grey box transformations
- Find fast heuristics for design-time and run-time scheduling methods
- Consider the communication and context switch overhead
- Fully handle complex non-deterministic behaviors