Real-Time Inter-Processor Synchronizations

Summer School MPSOC

Real-Time Inter-Processor

Synchronization Algorithms
— for predictability and scalability —

July 10, 2001

Hiroaki Takada

Dept. of Information and Computer Sciences
Toyohashi Univ. of Technology
hiro@ertl.ics.tut.ac.jp
http://www.ertl.ics.tut.ac.jp/~hiro/

I
Hiroaki Takada

Real-Time Inter-Processor Synchronizations
00000000

Agenda http://www.ertl.ics.tut.ac.jp/~hiro/tmp/mpsoc.pdf

A Brief Introduction to the ITRON Project
RTOS for Shared-Memory Multiprocessors

» Desired Properties for Scalable RTOS
Problem of Inopportune Preemptions

» Queueing Spin Locks with Preemption
» SPEPP Synchronization

Scalability of Nested Spin Locks

Priority Inheritance Spin Locks

RTOS Implementation Issues
» Solved Problem and Open Problem

| "RTOS" and "real-time kernel" (or just "kernel") are
used interchangeably in this presentation.

Hiroaki Takada

Real-Time Inter-Processor Synchronizations
00000000

A Brief Introduction to the ITRON Project

What is the ITRON Project? http:/7/www.itron.gr.jp/

» a project to standardize RTOS and related
specifications for embedded systems
(esp. small-scale embedded systems)

» a joint project of industry and academia
(not a government project)

core members:
Fujitsu, Hitachi, Matsushita (Panasonic),

Mitsubishi Electric, NEC, Oki Electric, Toshiba
US companies (or its subsidiaries):

Accelerated Technology Inc. (ATI), Hewlett-Packard,
Metrowerks, Red Hat, U S Software

academia:
Univ. of Tokyo, Toyohashi Univ. of Technology

» one of the subprojects of the TRON Project

I
Hiroaki Takada

Real-Time Inter-Processor Synchronizations
00000000

Advantages of the ITRON Real-Time Kernel Specifications

» compact and low-overhead real-time kernel
specifications
» fit in a single chip MCU
» easy to understand
» open specification
» anyone can use the specifications in free
» complete specification documents on the web site

» applicable to wide variety of processors
» from low-cost 8-bit MCU to high-performance 64-
bit RISC
» widely used for various embedded systems
» used in over 30% of embedded systems in Japan
» supported by many companies

I
Hiroaki Takada

Real-Time Inter-Processor Synchronizations

Design Concept

» loose standardization
maximum performance cannot be obtained
with strict standardization

M

adaptability & scalability

Design Principles
» allow for adaptation to hardware, avoiding
excessive hardware virtualization

» allow for adaptation to the application

» emphasize software engineer training ease

» organize specification series and divide into levels
» provide a wealth of functions

I
Hiroaki Takada

Real-Time Inter-Processor Synchronizations
00000000

Functions of uITRON4.0 Specification
» task management
» task-dependent synchronization

» task exception management Number of Service Calls

» basic synchronization and » full set
communication service calls: 166

» extended synchronization and static API: 21
communication » standard profile

» memory pool management service calls: 170

» time management static API: 11

» system state management » automotive control

» Interrupt management profile

» service call management service calls: 43

» system configuration management static API: 8

| no 170 handling functions defined * Minimum set

I
Hiroaki Takada

Real-Time Inter-Processor Synchronizations
00000000

Application Status of ITRON-specification OS

» most widely used OS specification for embedded
systems in Japan

» widely used especially in consumer applications

Typical Applications

Audio/Visual Equipment, Home Appliance

TVs, VCRs, digital cameras, settop boxes, audio components
Personal Information Appliance, Entertainment/Education

PDAs, car navigation systems, electronic musical instruments
PC Peripheral, Office Equipment

printers, scanners, disk drives, CD-ROM drives, copiers, FAX
Communication Equipment

ISDN telephones, cellular phones, ATM switches, satellites
Transportation, Industrial Control, and Others

automobiles, plant control, industrial robots, medical equipment

I
Hiroaki Takada

Real-Time Inter-Processor Synchronizations

22 88 12 70 24 26 66 58 49 124 23 48 43 31

100% 1 1 1
- . OS not used
I
0% || L
. . in-h -" | OS .
- IN-Nnouse origina .
60% | [h — d
other commercial OS
Ain *
20% ITRON-specification OSI I
» BENRER I AAN
Q C~ S BWE SR ®E S "8 e ®C @€ ®WE 9FE)
2 OB 5O 25 3 85 ¥ 5§58 Tg -k S0 g8 £ET £
. BECEISIEEEEIES IEESBEEEGS O
T SZcSE23:="33523 g3 iz V3 EF L
o B 50 5 cE— B o S S =
E E E < 5§ E 8 98 . O
S 8 W 2 S = = g £
T O S @) S 5 O

Embedded OS for each application field
(TRON Association Survey, late 1999 - early 2000, Japan)

Hiroaki Takada

Real-Time Inter-Processor Synchronizations
00000000

RTOS for Shared-Memory Multiprocessors

Target Architecture
> function-distributed shared-memory multiprocessors
more practical for embedded systems
Basic RTOS Model for FDM

» Each task Is bounded to a processor, called a local
task of the processor.

» Multiple local tasks are executed preemptively on
each processor.

—» multiprogrammed multiprocessors
Requirements

» predictability

» scalability (of worst-case behavior)

I
Hiroaki Takada

Real-Time Inter-Processor Synchronizations

Function-Distributed Shared-Memory Multiprocessor

ﬁlctu ators

B
ﬁ\@/i |

~MpPU| 170 MPU| [1/70 MPU
 Local] Local] Local]
‘Memory ‘Memory ‘Memory
7
external
Global :
network @ ﬁ Memory j storage

Hiroaki Takada

Real-Time Inter-Processor Synchronizations

pi-local g p2-local
l ‘mtasks I 4Xtasks

1/0}++}<>[MPU sl 170 MPU

[Local]
y

‘Memor
pi-local 2

Basic RTOS Model for FDM

synchronization objects p2-local
(semaphore, eventflag, mailbox) Glgbal synchronization objects
[Memory]

» Extensions adding private and/or global resources
to this model are possible.

Hiroaki Takada

Real-Time Inter-Processor Synchronizations
00000000

Predictability of RTOS

» Worst-case (maximum) execution time of each RTOS
system call should be bounded and known.

Scalability of RTOS (to the number of processors)

> Changes in worst-case timing behavior of the system
when a processor is added should be minimized.

An Obvious Limitation

» Worst-case execution times of a job that uses shared
resources exclusively become at least O(n).
n : the number of contending processors
» Various data structures within RTOS are shared
and must be accessed exclusively. (using spin locks)

—» \Worst-case execution times of some RTOS systems

calls become at least O(n).

I
Hiroaki Takada

Real-Time Inter-Processor Synchronizations
00000000

An Approach to Ease this Limitation
| taking account of the design rule of FDM
>» Many of the tasks can be processed without direct
synchronizations with tasks on other processors.
—» It Is advantageous that the worst-case behavior of
such tasks iIs independent of n.
» Predictable interrupt response is also important in
designing real-time systems.

—» The worst-case interrupt response time should be
Independent of n.

v

Inter-processor synchronization mechanisms, such
as spin lock algorithms, are among the most
Important issues to be addressed.

Hiroaki Takada

Real-Time Inter-Processor Synchronizations
00000000

Desirable Properties for Scalable RTOS

(A) The maximum execution time of a system call
that is to synchronize with tasks on the same
processor should be O(1).

(B) The maximum execution time of a system call
that is to synchronize tasks on other processors
should be O(n).

(C) The maximum interrupt response time on each
processor should be O(1).

(D) The interrupt service overhead should be O(1).

Interrupt service overhead: wasted computation time
by an interrupt service

% These times should be determined independently
of the other processors' activities.

I
Hiroaki Takada

Real-Time Inter-Processor Synchronizations

Desirable Properties at a Glance

system call of RTOS worst-case times
name function local remote
operations operations
. o \

sus_tsk |[suspend task execution| Tsus_ tsk | N-Twait + Tsus_tsk”
(with task switch)| Tsus_tsk’ | n:Twait + Tsus_tsk’”
rsm_tsk |resume task execution Trsm_tsk | N-Twait + Trsm_tsk”
(with task switch)| Trsm_tsk’ | n-Twait + Trsm_tsk’”

sig_sem |signal semaphore Tsig_sem | N-Twait’ + Tsig_sem”
(with task switch)| Tsig sem’ |Nn-Twait’ + Tsig_sem’”
wai_sem | wait semaphore Twai_sem [N-Twait’ + Twai_sem”
(with task switch)| Twai_sem’ |n-Twait’ + Twai_sem’”
; : ; ;)
interrupt response time Tint_response 0 (1)
interrupt service overhead Tint_overhead

Hiroaki Takada

Real-Time Inter-Processor Synchronizations
00000000

Assumptions

I In this presentation, inter-processor synchronization
algorithms are discussed under the following assumptions.

Hardware Support

» A universal atomic operation on a single word of
memory IS supported.
eg) compare _and swap (CAS)
load_linked/store _conditional pair

Used for the Implementation of an RTOS
» Task preemptions can be inhibited by disabling
Interrupt services.
< Unintentional task preemptions are triggered
by interrupt requests.
» Interrupt requests can be probed.

I
Hiroaki Takada

Real-Time Inter-Processor Synchronizations
00000000

Remark on the Assumption

» Hardware support for inter-processor
synchronization is limited to an atomic operation
on a single word of memory.

» With a SoC, more sophisticated hardware support
IS possible.

With more sophisticated hardware support,

» Concrete algorithms cannot be applied and then
are not important. So, | will almost omit them iIn
the presentation.

—» Refer to the cited papers for concrete algorithms.

» But, the problems are common and the
synchronization approaches are useful when
predictability and scalability are important.

I
Hiroaki Takada

Real-Time Inter-Processor Synchronizations

Reviewing Spin Lock Algorithms
Test&Set Lock

while test and set(L) = Locked do
wait_a while;

end;

// critical section.

L = Unlocked;

» most simple and popular spin lock algorithm.

» should not be used for real-time systems, because

worst-case execution time is not bounded (i.e. not
predictable).

» also has a bus saturation problem.

» Exponential back-off scheme helps, but is even worse
for real-time systems.

Hiroaki Takada

Real-Time Inter-Processor Synchronizations

MCS Lock — a queueing spin lock algorithm

[1] 3. M. Mellor-Crummey and M. L. Scott, Algorithms for Scalable
Synchronization on Shared-Memory Multiprocessors, ACM Trans.
Computer Systems, vol. 9, no. 1, pp. 21-65, Feb. 1991.

» Waliting processors for a lock form a FIFO queue.

last - R = Released
L = Locked
ot L
‘ processor beginning
lock holder last : o to wait for the lock.

Hiroaki Takada

Real-Time Inter-Processor Synchronizations

» When the lock holder releases the lock, it passes
the lock to the top processor in the gqueue.

last :
"~

last :

i e

» An FIFO order is guaranteed.
» Only local spin occurs.

Hiroaki Takada

Real-Time Inter-Processor Synchronizations
00000000

Priority-ordered Spin Locks

» There are several priority-ordered spin lock
algorithms proposed.

» Markatos' Lock

[2] E. P. Markatos, Multiprocessor Synchronization Primitives with
Priorities, Proc. 8th IEEE Workshop on Real-Time Operating
Systems and Software, May 1991.

» Craig's Lock

[3] T. S. Craig, Queuing Spin Lock Algorithms to Support Timing
Predictability, Proc. Real-Time Systems Symposium, pp. 148-157,
Dec. 1993.

» PR-Lock

[4] T. Johnson and K. Harathi, A Prioritized Multiprocessor Spin
Lock, Technical Report TR-93-005, Dept. of Computer Science,
Univ. of Florida, 1993.

I
Hiroaki Takada

Real-Time Inter-Processor Synchronizations
00000000

Problem of Inopportune Preemption

What is the Problem of Inopportune Preemption?
» occurs when spin locks are used for multiprogrammed
multiprocessors.
> two problematic cases:

(1) A task is preempted while it is holding a lock.
(2) A task i1s handed a lock while it is preempted.

In Iimplementing an RTOS....

» Case (1) iIs prevented by inhibiting task preemptions
(by disabling interrupt services) while a task is
holding a lock.

» Case (2) is serious.

<+ \With queueing spin locks, the turn that a task

acquires a lock is reserved.

I
Hiroaki Takada

Real-Time Inter-Processor Synchronizations

Lock Acquisition and Disabling Interrupt Services

| Lock acquisition and disabling interrupt services
must be atomic,

4

» Interrupt requests should be serviced while waiting
for a lock.

for making the maximum interrupt latency
Independent of the number of processors.

» Interrupt requests should be suspended once a
processor acquires a lock.

because Mmaximum interrupt service time Is quite
long In general
and the other processors contending for the
lock must wait for the time wastefully.

I
Hiroaki Takada

Real-Time Inter-Processor Synchronizations
00000000

Test&Set Lock with Preemption

» Test&Set Lock can be easily modified to be
preemption-safe.

disable_interrupt;
while test and set(L) = Locked do
If Interrupt_requested then
enable_interrupt;
// service interrupt.
disable_interrupt;
end
end,;
// critical section.

| The same scheme cannot be applied to queueing
spin locks straightforwardly because of the case (2)

problem.

I
Hiroaki Takada

Real-Time Inter-Processor Synchronizations
00000000

Queueing Spin Locks with Preemption

» Two schemes to add preemption to MCS lock have
been proposed.
preemption-safe versions of MCS lock

Basic Preemption Scheme

[5] R. W. Wisniewski, L. Kontothanassis, and M. L. Scott, Scalable
Spin Locks for Multiprogrammed Systems, Proc. 8th Int'l Parallel
Processing Symposium, Apr. 1994.

[6] H. Takada and K. Sakamura, A Bounded Spin Lock Algorithm
with Preemption, Technical Report 93-2, Dept. of Information
Science, Univ. of Tokyo, Jul. 1993.

» A task informs other processors that it is preempted,
when it is preempted while waiting for a lock.

» The releasing task removes the preempted task from
the queue, In other words, cancels the reservation.

I
Hiroaki Takada

Real-Time Inter-Processor Synchronizations

lllustrating Basic Preemption Scheme
N P = Preempted

C = Canceled

last ;[e
S e e e

servicing interrupts

The lock holder
releases the lock.

dequeued while servicing interrupts

Hiroaki Takada

Real-Time Inter-Processor Synchronizations

Drawback of Basic Preemption Scheme

» A dequeued processor (while servicing interrupts)
must re-execute the lock acquisition routine from
the beginning after it finishes the interrupt service.

» This re-execution overhead should be added to the
Interrupt service time in schedulability analysis.

then called as the interrupt service overhead

A

» The interrupt service overhead depends on the
number of processors.

This violates property (D).

Hiroaki Takada

Real-Time Inter-Processor Synchronizations

Improved Preemption Scheme

[7] H. Takada and K. Sakamura, Predictable Spin Lock Algorithms
with Preemption, Proc. Real-Time Operating Systems and
Software, pp. 2-6, May 1994.

» The task releasing the lock remains the preempted
processors in the queue, in other words, postpones
the reservation.

» The Interrupt service overhead can be bounded
with a constant time length.

Hiroaki Takada

Real-Time Inter-Processor Synchronizations
00000000

SPEPP Synchronization

[8] H. Takada and K. Sakamura, A novel approach to multiprogram-
med multiprocessor synchronization for real-time kernels, Proc.
18th IEEE Real-Time Systems Symposium, Dec. 1997.

Approach

> If a task’s turn to acquire the lock comes while the
task Is preempted, its operation is executed by
another processor that is spinning on the lock.
Basic Idea

» making one of the idling (spinning) processors work
for busy (preempted) processors!

Naming
>» SPEPP = Spinning Processor Executes
for Preempted Processors

I
Hiroaki Takada

Real-Time Inter-Processor Synchronizations
00000000

Framework of SPEPP Synchronization Algorithms

>» The Kind of operation and its parameters are stored
IN an operation block.

» The area to write the return values is included In
the operation block.

» The operation block is posted to a FIFO-ordered
operation queue

v

> One of the spinning processors is selected and
executes the operation at the head of the operation

quUeUE. . Operation blocks in the queue are
processed in a strict FIFO order.

» Any spin lock algorithm can be used for the selection.

Hiroaki Takada

Real-Time Inter-Processor Synchronizations
00000000

Basic SPEPP Synchronization based on Test&Set Lock

Rough Description of the Algorithm

» The preemption-safe test&set lock is adopted to
the previous framework.

> A task tries to acquire the lock, only when the lock
IS Idle and its operation has not been executed.

» two optimizations

(1) A task can execute more than one operations
INn the queue without releasing the lock.

(2) The data structures for the spin lock and the
operation gueue are merged.

I
Hiroaki Takada

Real-Time Inter-Processor Synchronizations
00000000

Timing Behavior
T : the maximum execution time of an operation
N : the number of contending tasks
» The maximum interrupt response is T (+ const).

» The maximum execution time until a task finishes
Its own operation is N - T (+ const).

» The interrupt service overhead is zero except for

some lock handling overhead.

» The execution of the operations continues to make progress,
unless all the tasks are preempted.

» If all the tasks are preempted, the execution is suspended,
but its is shorter than any one of the preemptions.
Problem
»N - T becomes very large when the number of

tasks is large.

I
Hiroaki Takada

Real-Time Inter-Processor Synchronizations
00000000

Extended SPEPP Synchronization

Rough Description of the Algorithm
> An operation block is prepared for each processor.
» The task trying to acquire the lock uses the queue
node, even if a lower priority task is using it.
» The lower priority task must retry the operation, if
the queue node is stolen by a higher priority one.
Timing Behavior
n : the number of contending processors

» The maximum execution time until a task finishes its
own operation may be considered as (n+1) - T (+ const).

An operation by a lower priority task may have already
started by another processor when stealing the queue node.

I
Hiroaki Takada

Real-Time Inter-Processor Synchronizations
00000000

Other SPEPP Synchronization Algorithms

SPEPP Synchronization based on MCS Lock

» A preemption-safe MCS lock Is adopted instead of
test&set lock.

Priority-ordered Execution

» can be realized with a priority-ordered operation
gueue (or a preemption-safe priority-order spin lock)

Limitation of SPEPP Synchronization

> Operations on a shared data structure must be
executable on any processor.

In other words
Private data of a processor must be passed in the
operation block and restored from it.

-» performance penalty

I
Hiroaki Takada

Real-Time Inter-Processor Synchronizations
00000000

Other Approaches to Inopportune Preemption

Wait-free / Lock-free Synchronization

» synchronization without locking
» walit-free = inefficient to implement a complex data
structures within a real-time kernel
> lock-free — difficult to predict the maximum
(= non-blocking) execution time with multiprocessors
Solutions with Task Scheduling

> Locks and/or preemptions are avoided with task
scheduling.

I
Hiroaki Takada

Real-Time Inter-Processor Synchronizations

Scalability of Nested Spin Locks

Nested Spin Locks

» System resources that must be accessed exclusively
by a processor are usually divided into some lock
units to exploit parallelism.

» When a processor accesses some resources included
INn different lock units, the processor must acquire
multiple locks one by one.

Example
acquire_lock(L>);
acquire_lock(L,);
// critical section
release_lock(L,);
release_lock(L,);

Hiroaki Takada

Real-Time Inter-Processor Synchronizations
00000000

Scalability Problem of Nested Spin Locks

» Scalability of the maximum execution times of
critical sections guarded by nested spin locks is
discussed below.

» With the simple methods, the maximum execution
times of nested spin locks is o(n™).

n : the number of contending processors
m : the maximum nesting level of locks

—» unacceptable from scalability point of view

» With the totally FIFO approach, this can be reduced
to o(n-eMm).
[9] H. Takada and K. Sakamura, Real-Time Scalability of Nested Spin

Locks, Proc. 2nd Real-Time Computing Systems and
Applications, pp. 160-167, Oct. 1995.

I
Hiroaki Takada

Real-Time Inter-Processor Synchronizations
00000000

Example (when m = 2)

» Suppose the case that each processor repeatedly
executes one of the three routines below.

acquire_lock(L4); acquire_lock(L,);

// critical section // critical section

release_lock(L,); release_lock(L,);
routine (a) routine (b)

acquire_lock(L>);
acquire_lock(L,);
// critical section
release_lock(L,);
release_lock(L,);

routine (c)

Hiroaki Takada

Real-Time Inter-Processor Synchronizations

Example (cont.)

» If the locks are simply implemented with a FIFO
spin lock algorithm, the maximum execution times
of routine (b) and (c) become O(n2).

» The worst-case scenario that P, executes routine
(c) Is as follows.

P —{P, P 1—P,

waiting queue for the lock Lo

Lo | Po

acquire_lock(L,);

l lock holder acquire_lock(L,);

// critical section
release_lock(L4);

Ll‘l P2 release_lock(L,);
routine (c)
» P, waits for the critical section executed by P-.

Hiroaki Takada

Real-Time Inter-Processor Synchronizations

Example (cont.)

» After P, releases L,, P5 can acquire L.
But, before P; acquires L,, P, can acquire L;.
Then, P; must wait for the critical section of P,.

P, P |—P,

waiting queue for the lock L,

L, [P
\ acquire_lock(L,);
D acquire_lock(L4);
3 acquire_lock(L); // critical section
// critical section release_lock(L4);
L] P2 release_lock(L,); release_lock(L,);
routine (a) routine (c)

» P, waits for the critical sections of P, and Pa.

Hiroaki Takada

Real-Time Inter-Processor Synchronizations
00000000

Example (cont.)
» After P, releases L,, P, can acquire L.

But, before P, acquires L, P,, --- ,P, can be
waiting for L;. Then, P; must wait for the critical
section of P,, --- ,P,,. acquire_lock(L,);
// critical section
|—2 [P1 — release_lock(L,);
_— routine (a)
P53 P, P, P,
waiting queue for the lock L4
Ll P2
» P, waits for the critical sections of P,, --- ,P,,.

» As the result, P; must wait for at most O(n?) critical
sections until it finishes an execution of routine (c).

Hiroaki Takada

Real-Time Inter-Processor Synchronizations

Totally FIFO Approach

» obtaining a time stamp when a processor begins
waiting for the outermost lock

» using a priority-order spin lock algorithm with the
time stamps as the priorities

v

» The maximum execution times of critical sections
IS reduced to o(n) when m iIs constant.

Optimizations

» A FIFO spin lock can be used for the outermost lock
(more exactly, the lock with the maximum nesting
level).

» A sequence number that a processor begins waiting
for the outermost lock can be used instead of a time
stamp.

I
Hiroaki Takada

Real-Time Inter-Processor Synchronizations

When Nesting in Three or More Levels

» With simple application of totally FIFO approach,
the maximum execution times cannot be improved
to O(n) due to uncontrolled priority inversions.

v

Priority inheritance scheme can be adopted to solve
this problem.
priority inheritance spin lock

» With totally FIFO approach with basic priority
Inheritance spin lock, the maximum execution

times can be improved to O(n-eMm).

I
Hiroaki Takada

Real-Time Inter-Processor Synchronizations
00000000

Priority Inheritance Spin Locks

Priority Inversion Problem in Nested Spin Locks

» The problem of uncontrolled priority inversion in
task scheduling is well-known and well-studied.

» Uncontrolled priority inversion also occurs in nested
spin locks, but the situation is different.

Example (uncontrolled priority inversion)

» Assume that four processors repeatedly execute
one of the two routines below in random order.

acquire_lock(L,);

acquire_lock(L,); acquire_lock(L,);
// critical section. // critical section.
release_lock(L,); release_lock(L,);

release_lock(L,);

Hiroaki Takada

Real-Time Inter-Processor Synchronizations

Example (cont.)

P, tries to acquire L.
S uncontrolled priority inversion
h|gh pnonty —. Pl I nnyym

P2 AIIIIIIII i
middle priority <~ ‘{ f
\ P3 ﬂllllllll ?

A
P, and P4 locks L, alternately.

low pl’iOI‘ity — P4 v_ml|||

P, locks Ll./ P, tries to acquire L.

Hiroaki Takada

Real-Time Inter-Processor Synchronizations
00000000

Incorporating Priority Inheritance Scheme

[9] C.-D. Wang, H. Takada and K. Sakamura, Priority Inheritance
Spin Locks for Multiprocessor Real-Time Systems, Proc. Int'l
Symposium on Parallel Architectures, Algorithms, and Networks,
pp. 70-76, Jun. 1996.

» Priority inheritance Is a promising approach to solve
the uncontrolled priority inversion problem in task
scheduling.

—» apply the scheme to nested spin locks
» basic priority inheritance scheme for spin locks

» When a processor makes some higher priority
processors wait, it inherits the highest priority
among them.

» Priority inheritance must be transitive.

I
Hiroaki Takada

Real-Time Inter-Processor Synchronizations

Example with Priority Inheritance Scheme

P, tries to acquire L. P, acquires L;.
hlgh priority —— Pl AIIM

P2 v—IIIIIIIIIIIIIIIIIIIIIIIIIIII_

A

e

middle priority N
P3 ﬂIIIIIIIIIIIIIIIIIIIIIIIIII Hiin

loW priority —s P4 eo—— i

= A
P, locks Ly. / P, releases L;.
P, inherits the priority of P! P, acquires L.
!

Hiroaki Takada

Real-Time Inter-Processor Synchronizations
00000000

RTOS Implementation Issues

? Is a scalable RTOS with the desirable properties
Implementable with those synchronization
techniques?

Desirable Properties for Scalable RTOS (again)

(A) The maximum execution time of a system call
that is to synchronize with tasks on the same
processor should be O(1).

(B) The maximum execution time of a system call
that Is to synchronize tasks on other processors
should be O(n).

(C) The maximum interrupt response time on each
processor should be O(1).

(D) The interrupt service overhead should be O(1).

I
Hiroaki Takada

Real-Time Inter-Processor Synchronizations

Granularity of Lock Units

» Access pattern on kernel data structures in each
system call of a real-time kernel is investigated.

v

» two lock units for each processor
(a) task lock: the task control blocks and the ready
gueue on the processor 4 acquisition order
(b) object lock: the control blocks of the task-
Independent synchronization objects on the
processor

v

» Usual operations on a task need one lock.
> Operations on a synchronization object may need
at most two locks at the same time.

Hiroaki Takada

Real-Time Inter-Processor Synchronizations
00000000

Without Task-Independent Synchronization Objects

» Each system call requires only one lock at once.
no nested spin locks
» In order to satisfy (A),
» Spin lock with local precedence, with which a

processor can acquire its local lock with
precedence over other processors, should be used.

» In order to make (B) and (C) compatible,
» Queueing spin lock with preemption Is necessary.

» In order to satisfy (D),
» Improved preemption scheme should be used.

—» All properties can now be satisfied.

| SPEPP synchronization can also satisfy all properties.

I
Hiroaki Takada

Real-Time Inter-Processor Synchronizations
00000000

Supporting Task-Independent Synchronization Objects

[10] H. Takada, C.-D. Wang, and K. Sakamura, Issues for realizing a
scalable real-time kernel for function-distributed multi-
processors, Work in Progress Session of 17th IEEE Real-Time
Systems Symposium, pp. 23-26, Dec. 1996.

» Two locks, an object lock then a task lock, are
necessary to be acquired in some system calls.
» In order to satisfy (A),
» Synchronization objects should be classified into

private objects, which are accessible only by the
tasks on its host processor, and shared objects.

» In order to satisfy (B),
» Totally FIFO approach must be used.

I
Hiroaki Takada

Real-Time Inter-Processor Synchronizations

» In order to satisfy (C),
» A preemption scheme Is necessary.

retry:
acquire_lock(Object_Lock);
If [an interrupt request is detected while waiting] then
[service the interrupt];
goto retry;
end,;
[determine which lock to acquire next];
acquire_lock(Task Lock);
If [an interrupt request is detected while waiting] then
release lock(Object Lock);
[service the interrupt];
goto retry;
end;

Hiroaki Takada

Real-Time Inter-Processor Synchronizations

» In order to satisfy (D),
» After a processor returns from an interrupt

service requested while waiting for the inner lock,
the processor should wait for the outer lock at
the top of Its waiting queue.

v

» This violates (B), however.

—» No method with which all properties are satisfied
has not been proposed.
A Possible Approach to the Realization

» Applying the SPEPP synchronization approach to
nested spin locks.

not investigated yet (not easy)

I
Hiroaki Takada

Real-Time Inter-Processor Synchronizations
00000000

Concluding Remarks

» Various inter-processor synchronization methods
for implementing a scalable RTOS have been
discussed, assuming that atomic operations on a
single word of memory iIs supported with hardware.

» Under this assumption, the overhead of those
synchronization algorithms is considerably large.

» With a SoC, more sophisticated hardware support
IS possible and should be investigated. What Kind
of hardware support is desireble is an open
guestion.

one extreme: implementing RTOS with hardware

I
Hiroaki Takada

