Will 3D stacking of ICs enable to
continue Moore’s momentum in
the 21st century?
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Architecture Exploration for 3D
e To find the technology/designh sweet-spot
(including cost modeling)
e To provide IP necessary for 3D design and
understand its technology requirements
e To analyse the impact of 3D on
architectures

3D Technology Assessment & Prototyping

e To demonstrate process steps and basic
integration

e To demonstrate a reliable and yielding
base-line process

e To establish a modeling environment,
basic design kit and design rule check

e To provide prototype capabilities for 3D
(including design flow)

3D Process Technology R&D

e To R&D 3D technologies for reliable
stacking and interconnection of
heterogeneous components

e To outperform existing 2D technologies in
cost, power, performance and time-2-

market
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(including cost modeling)
e To provide IP necessary for 3D design and
understand its technology requirements
e To analyse the impact of 3D on
architectures

3D Technology Assessment & Prototyping
e To demonstrate process steps and basic
integration
e To demonstrate a reliable and yielding
base-line process
e To establish a modeling environment,
basic design kit and design rule check
e To provide prototype capabilities for 3D
(including design flow)




3D TSV Technology Roadmap
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Technology 3D-WLP TSV 3D-SIC Cu-nails TSV 3D-IC Sub-p TSV

Programme || >

1um
4 um
Wafer thickness | 100 um 50um  30um ||| 20 um 15 um Active layer only - SOI

Via size 50 um 25 um 10 um 5um 2 um

Via pitch 80 um 40 um 20 um 10 um 5um

50 um 30 um

Interconnect Bondpad (0-level) Global Intermediate Local interconnect
Hierarchy level level

e Use of standard Si e Cu nail process in foundry e Fully foundry level process
e Multi-source possible e Thinning/stacking post- e Requires use of SOI wafers
e Post-foundry process foundry process e only W2W stacking possible
e D2D or D2W stacking e D2W or W2W stacking o Extreme W2W alignment
e Mainly parallel process o Key: D2W/W2W alignment accuracy required
e Strongly Cost driven accuracy, speed and yield e Sequential process flow

e Mainly parallel process e Compound yield issues

I11AP 3D-WLP I11AP 3D-SIC
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3D Interconnect Technology

Developments at IMEC

3D-SIC Cu-nail TSV 3D-WLP

H_—% =) Cu/polymer TSV Ultra-thin
o

—” Chip stacking

Electroplated
Cu layer

Polymer
layer

HR-SI rf-IPD
wafer
(100pm)

SiO2 layer
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Architecture Exploration for 3D
e To find the technology/design sweet-spot
(including cost modeling)
e To provide IP necessary for 3D design and
: understand its technology requirements
ystem Design e To analyse the impact of 3D on
architectures
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3D Process Technology R&D
e To R&D 3D technologies for reliable
stacking and interconnection of
heterogeneous components
e To outperform existing 2D technologies in
cost, power, performance and time-2-

Performance market
Power

Test Chip Design

e Test Structures for Designh Rule Assessment
- TSV characteristics: capacitance, resistance, yield, stack alignment,

- Impact of TSV and of relative process on transistors
- Impact of TSV and of relative process on wires

- Diode-based thermometers, hot-spot heaters to be placed in different chip
locations

- Structures for processing and for std tests

3D130B_1  3D130T_1 3D130B_2  3D130T_2
- REF test structures

- Dedicated test structures by our
partners

- Small 3D circuits (e.g. ring oscillator
with stages distributed in different
chip level, ...)

e For 200mm wafers (2 metal layers -
130nm platform technology)

e TSV: Via diameter: 5um/Via pitch: 10um

e D2W and W2W possibilities at the same
time




Design rule and model assessment of

Basic process modules knowhow

3D130B_1 3D130T_1 3D1308B_2 3D1307_2

First Silicon Predictive Modeling

Design rules & models

PathFinding flow & Basic Design Kit

PathFinding @ The Core of introducing
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Architecture Exploration for 3D
e To find the technology/design sweet-spot
(including cost modeling)
e To provide IP necessary for 3D design and
; understand its technology requirements
tem Design e To analyse the impact of 3D on
architectures
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3D Technology Assessment & Prototyping

e To demonstrate process steps and basic
integration

e To demonstrate a reliable and yielding
base-line process

e To establish a modeling environment,
basic design kit and design rule check

e To provide prototype capabilities for 3D
(including design flow)

3D Process Technology R&D
e To R&D 3D technologies for reliable
chnology Resear stacking and interconnection of
heterogeneous components
e To outperform existing 2D technologies in
COS cost, power, performance and time-2-

Performance market

Power




Path finding

a first illustration

IMEC’s SDR next generation

3D Integration
Scenarios

ﬁrellmmary cost analysis
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Performance Analysis for Various
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e Assumptions

Area of 2D 45nm baseline SDR:
34mm?

3D technology: TSV 10um

Homogeneous technology
layers, custom fabricated

Manufacturing cost is dominant

Conclusions

3D using older (65nm)
technology is never attractive
compared to 2D 45nm baseline

3D using 45nm technology is
only attractive on the short term

But ...




Manufacturing cost of 3D SIC

35 e Assumptions
- Area of 2D 45nm baseline SDR:
30 | 102mm?
e Becoming attractive for $
25 1 - Lower vyield loss (smaller dies)
- Importance increases for scaled
‘g 20 4 technologies
Q -
R ‘ e More opportunities need to
| be explored:
10 | - Heterogeneous technologies
‘ - Smaller volumes when NRE is
5 | 3D 45nm dominant
: - Commodity components
e Top-down path finding
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e technology and design
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3D DRAM to substitute badly scaling SRE

e Small memories scale Q
badly below 45nm due
to process variations

e Companies ask us:
“provide us with possible
alternatives”?




3D DRAM as replacement for embedded SRAM

Preliminary results
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0.8 * DRAM cells are 10x smaller compared to
0.7 SRAM
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e More than 2x area reduction by just
changing the cell on a SRAM matrix
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Pewer Consunmpticmns

e Similar read/write power for same
performance

 Less power to retain data ( 496 > 54
pW/bits), because refresh power is less
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compared to SRAM cell leakage 0 0.1 0.5
» TSV power cost can be contained Activity @ f= 500MHz
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