#### A Time-predictable Microprocessor: the Patmos Approach

Martin Schoeberl Technical University of Denmark

### Outline

- \* Why time-predictable architectures?
- Definition of time-predictable computer architecture
- The Patmos processor
- Conclusion

# Real-Time Systems

- Systems with timing constraints
- \* In (hard) real-time systems
  - \* Function has to be correct
  - \* Function has to deliver result in time
- Timing proof with schedulability analysis
  - \* Execution time of tasks need to be known
  - \* WCET analysis gives the input

#### Worst-Case Execution Time

- Measurement of execution time is not safe
  - Execution time is data dependent
  - \* Did we trigger the worst-case?
- Static WCET Analysis
- High-level WCET analysis is mature research
  - Considers control flow and flow facts (loop bounds)

# Static WCET Analysis Issue

- Low-level analysis is the main issue
  - Modern processors are too complex
  - Lot of (hidden) state information
    - Key for performance
    - Issue for WCET analysis
- WCET analysis about 10 years behind processor technology

### New Architectures Needed

- Design a computer architecture for real-time systems
  - \* WCET is the main design constraint
  - Average-case performance not (so) interesting
- \* Use and develop features that are
  - WCET analysis driven
  - Have a low WCET

### Time-predictable Computer Architecture

Common CA wisdom:

Make the common case fast and the uncommon case just correct

Time-predictable CA:

Make the worst case fast and the whole system analyzable

# Our WCET Target Architecture



- Trying to catch up with the analysis on the complexity of average case optimized processors is not an option
- We need a sea change and take a constructive approach. Design processors for real-time systems!

# The Patmos Design

- \* A time-predictable RISC/VLIW processor
- Explore VLIW vs. CMP tradeoff
- Explore JOP ideas on a C/C++/RISC target
- WCET aware compiler
  - Optimization for single-path programming

### The Architecture

- 32-bit RISC style microprocessor
- Dual issue VLIW
  - Variable length instructions (32 and 64 bit)
- \* All instruction delays are visible
- No pipeline stalls
  - Except wait instruction for memory (split load)
- Split cache for data cache

#### **Instruction Set**

- Standard RISC instruction set
  - Global register file for both execution paths
- All instructions are predicated
  - Dual issue plus predicates support single-path programs
- Typed load / store instructions for split cache

## The Pipeline



# Software Development

- Adaption of the LLVM compiler framework
  - Support of Patmos ISA
- Explore typed load and store instructions
- Explore cache prefetching versus scratchpads
- WCET driven optimization
  - \* We will use AbsInt's WCET analysis tool aiT

#### Patmos as Research Platform

- A dual issue VLIW is nothing special, but a base line for time-predictable architecture research
- \* EU project T-CREST on time-predictable CMP
  - Development of static scheduled network-on-chip
  - \* Time-predictable DRAM controller
  - Explore instruction set for single path programming
  - Explore memory hierarchy
  - WCET analysis for CMP

### Conclusion

- Future real-time systems need new processor architectures
  - WCET optimized instead of average case optimization
  - Avoid the average-case performance trap
  - Only WCET analyzable features count
- Patmos processor to explore time-predictable architectures
- Patmos will be available in open source